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Photovoltaic System Research and Development in Tunisia

1. Introduction.

In an emerging country such as Tunisia, the
international situation imposes an accurate technology
transfer and an absolute leveling in sectors extremely
interesting on very high added value, like that of
renewable energies. This may be achieved by
increasing the potential of research and development
(R&D) laboratories and the transfer of valorized
results towards industrial fields.

2. Energy lIssues in Tunisia

The Tunisian energy context is currently characterized

by an increase of the energy demand and a stagnation

of the hydrocarbon resources, which leads to an

energy deficit estimated at 8 Mtep by 2010.

The Tunisian government has a particular interest to

promote durable energy and to adopt an energy

strategy which takes account at the same time the
requirements of the socio-economic development and

safeguarding of the environment [1].

To face this situation, Tunisia committed itself in an
energy policy compatible with the durable
development which consist to :

- Intensification and reinforcement of the efforts
leading to the development of the national
hydrocarbon resources by the promotion of the use
of the clean fuels such as the natural gas.

- The rational use of energy,

- Obligatory and periodic audits in the sectors:
industry, transport and service,

- The promotion of the new techniques of energy
economy such as the cogeneration, the thermal
regulation of the habitats and the  certification of
the house electric apparatuses.

- The installation of an adequate lawful framework of
energy mastering.

-The development of renewable energies which
resulted in :

- The development of wind power for the
production of electricity by the installation of a
wind park of 300 MW (2005-2011).

- Diffusion on large scale of solar heaters of
water,

- Optimization of the rural electrification by PV
systems. Beside this rather important market,
Tunisia has approximately 300,000 surface
wells. This should encourage to develop PV
pumping systems. The photovoltaic energy
will rise to 3.5 MW by 2010 (electrification
rural, pumping, professional application).

Dr. Ridha LANDOULSI

System units 2010 | 2020 | 2030
Wind MW 310 1130 | 1840
Solar thermics 103 m? 280 950 2500
photovoltaics MWc 3.5 8.5 18
Biogas MW 30 50 80
Economy energy | Mtep 1.3 6.7 18.6
(cumul)

Avoided MTE 3 15.7 43.6

emission (cumul) CO2

Fig. 1. Development prospect of renewable
energies in Tunisia

3. Historical background of PV research and
development in Tunisia

PV Research activities [2]

End A study was performed, in Tunisia,
of showing that many remote rural areas are
1970’s | in need of electric utility insuring a
minimum  of human comfort and
preventing migration of the rural
populations

1985 | In the framework of a national project
promoting renewable energies, a PV Pilot
Plant (PVPP) was installed (1985) at
INRST (National Institute for Research
Science and Technology) by local
competences.

1986 | Since 1986, the role assigned to the PVPP
is to apply renewable energies based
national programmes, particularly related
to the research and development (R&D) of
PV materials and technologies.The first
main objective was the development of a
local PV technology that may produce
monocrystalline Silicon solar cells and
modules with efficiencies approaching
international ones.

The results of Research and Development
(R&D) achieved on crystalline silicon
solar cells and the demonstration projects
realized within the PVPP, let the PV
research team thought that Tunisia is not
so far to industrialize PV technology.
Several attempts have been made to
promote and transfer the technological
know acquired in the PVPP by inviting
industrials both at national or international
levels. All of them recognize the capability
and the level attained by the PV group,
which is the first Arabic and African
research team who master and develop
silicon solar cells processing and PV

modules.
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1997 | In 1997 a research group on photovoltaic
systems emerged within the photovoltaic
laboratory. The research activities of this
group were oriented on modeling, control
and optimal management of PV systems
used in pumping and desalination of water.

2001 | In 2001 the PV group realized an
important demonstration project financed
by the ALECSO and consisting of
producing 25 PV bags (distributed in the
Arabic countries) for the education of
technicians and engineers working in the
field of renewable energy. Each bag
contains a PV module having a power of
30 Watts, and encloses different
applications (lighting, pumping ...etc.)

Fig.2. Education PV system bags

Fig.3. PV water desalination by reverse osmosis
unit.

4. National PV program
The ANER (National Agency for Renewable
Energies) recently formerly (ANME) National
Agency for Energy Conservation which is the
governmental institution in charge of renewable
energy promotion. ANME has assured until 2006[3]:

- the rural PV electrification of 12000 homes and 200

schools,

- 5 projects of PV public Lighting,

- 86 PV pumping systems.
(Totally: 2MWec of PV modules has been installed).
Theses PV applications have contributed to the
development of the rural environment and enabled the
manufacturing of special batteries and regulators, for
the first time in Tunisia.

TUAT Kurokawa Laboratory
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In the framework of a Japanese credit to Tunisia
(financed by JBIC), ANME will assure the installation
of 1200 PV home systems, 500 PV public Lighting,
48 PV pumping and 45 PV desalination systems.

Fig. 4. Solar Street-lighting in Ksar Ghilene,
south of Tunisia.

5. Support of research programs and development

An important Presidential decision ordered the
establishment of a technological pole (Techno-Park )
on the site of Borj-Cedria, beside the INRST[4]. This
Techno Park, included from 2006 : three Research and
technologies Centers of Energy (CRTEn ), Water, and
Biotechnology, a Production Park, an Innovation Park,
an University Park, and a Central Library.
This Techno Park is designed to promote innovative
and competitive enterprises complying with the
national, as well as international priorities, some
formation and research activities of high level in
relation with Industry, and new and high technologies.
This may offer a setting to the enterprises in order to
develop some new technologies (i.e., PV technology).
This Techno Park may also receipt enterprises that
may produce entire PV modules. It should be assisted
by the LPVS researchers of CRTEn. (Research and
Technologies of Energy Center).

6. Conclusion

The installation of renewable energies in Tunisia is
justified by the increase of conventional energies price
and the environmental protection. So, the promotion,
the diffusion and the development of renewable
energies have an unconditional support in Tunisia.
However, so that these actions are durable, it would be
necessary that they find technological supports by
institutions of engineering and research laboratories of
point.
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Analysis of Class D Inverter With Irregular
Driving Patterns

Hirotaka Koizumi, Member, IEEE, Kosuke Kurokawa, Member, [EEE, and Shinsaku Mori, Member, IEEE

Abstract—This paper presents an analysis of Class D inverter
when irregular driving patterns are given to the gate drive of the
switch devices. The analysis has been carried out with focusing
on the waveforms, harmonics, low-frequency components, output
power, and equivalent dc resistance, which are numerically ana-
Iyzed and discussed. Class D inverters with six different Q factors
from 0.1 to 20 are analyzed about 2'¢ driving patterns for each Q.
Superior four models of the six inverters are built and tested in cir-
cuit experiments. The calculated waveforms are compared to the
experimental results. Both of them are agreed well in time domain
and frequency domain. Analytical results show a possibility of a
novel control method with irregular driving patterns. In spite of
discontinuous control, the output power or voltage can be strictly
changed as if continuous using the selected driving patternsin some
ranges.

Index Terms—Class D inverter, high-frequency inverter, reso-
nant power source.

[. INTRODUCTION

LASS D inverter [1]-[4] is one of the high-frequency

high-efficiency resonant power sources, which has been
applied to dc/dc resonant converters, radio transmitters, and
electronic ballasts for fluorescent lamps [4]. Its high dc/ac
power conversion efficiency is achieved by the zero-current
switching (ZCS), which enables its operation at several hundred
kilohertz. To control its output power or voltage, the operating
frequency is varied (FM control) or a phase shift is given using
two switching legs. However, ZCS is not maintained when
the operating frequency is shifted away from the resonant
frequency, or when a phase shift is given between the two
switching legs. Those may result in an increase of switching
losses. Against the problem, this paper presents a novel method
to control the output power or voltage of Class D inverter
at a fixed operating frequency with maintaining ZCS. The
proposed method gives irregular driving patterns instead of a
uniform driving pattern for the gate drives of the switching
devices (MOSFETs). The output resonant cireuit is tuned to
the operating frequency; therefore, the time for ZCS comes by
half cycle. The irregular driving patterns cause the switching
transition at the time for ZCS irregularly. The output power
or voltage is changed by the various driving patterns with
maintaining ZCS.

Manuscript received November 23, 2004; revised May 12, 2003, This paper
was presented in part at the [EEE Interational Symposium on Circuits and Sys-
tems, Vancouver, BC, Canada, May 23-26, 2004. This paper was recommended
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S. Mori is with the Department of Electrical and Electronics Engineering,
Nippon Institute of Technology, Saitama 345-8501, Tapan.
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In thevoltage source full bridge inverter with a series resonant
circuit for induction heating, pulse density modulation (PDM)
control is proposed [5]. In this method, operating frequency is
fixed at the resonant frequency. All the switches always turn on
and off at zero current. The superiority of the PDM control in
reduction of switching losses and electromagnetic noises is de-
scribed in [5]. In that research, probably because of the applica-
tion, the discontinuity of output power or comparison between
switching patterns in terms of low-frequency components is not
discussed.

It has been pointed out that irregular driving patterns form
variouns waveforms which include harmonics and low-frequency
components. The purpose of this paper is to make it clear the
characteristics from the viewpoints of the harmonics, low-fre-
quency components, output power, and equivalent de resistance
by numerical analysis focusing on the waveforms caused by the
irregular driving patterns.

Six Class D inverters with different @ factor from 0.1 to 20
are analyzed about 2'¢ driving patterns for each and compared.
Superior four models of the six are built and tested in circuit
experiments. The experimental waveforms correspond with the
calculation results in time domain and frequency domain.

A similar control way was applied to Class DE inverter [6].
However, it could not prevent a small increase of power dis-
sipation of switching loss, because its high efficient operation
at a few megahertz is on the assumption of zero-voltage and
zero-current switching [7]-{14]. On the contrary, Class D in-
verter does not require zero-voltage switching. Its operating fre-
quency is less than that of Class DE inverter. Therefore, Class
D inverter can operate with keeping high power conversion ef-
ficiency against various switching patterns.

Analytical results show a possibility of a novel control
method with irregular driving patterns. In spite of discon-
tinuous control, the output power or voltage can be strictly
changed as if continuous using the selected driving patterns in
SOIIE ranges.

II. CIRCUIT DESCRIFTION

A Class D voltage-switching series resonant inverter [ 1]-[4],
[15], which is fed by a dec voltage source, is shown in Fig. 1.
It is composed of two switch devices S1, Sz, a bandpass filter
(BPF) L-C, and a load resistance Rp,. The pair of switch devices
performs as one switch which alternately connects with the de
voltage source V7 and an earth with keeping 0.5 duty ratio at
the switching frequency f; i.e., while one device is ON the other
is OFF in half period 1'/2 = 1/2f. The driving signals D1 and
D,s keeptherelation D, = D,». Theupper switch S, is driven
through a transformer. To maintain the gate-turning-on voltage,

1057-7122/$20.00 © 2006 IEEE
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Fig. 1. Class D voltage-switching series resonant inverter.

a clamper is added between the transformer and S;, which is
effective when irregular driving pulses are given. In the regular
operation, it keeps alternate operation by one period. This op-
eration generates a uniform square waveform vgo at the input
terminal of the BPF at the switching frequency. An impedance
of the BPF at the operating frequency is designed to be zero;
therefore, only the fundamental component of the square wave-
form flows to the load resistance in ideal. The output current ¢,
becomes sinusoidal and it flows through each switch by half pe-
riod. As shown in Fig. 2, while the switch current 251 or igs is
flowing through one switch, the voltage across the switch device
vg1 OF vge 18 zero, and the switching transition oceurs at the zero
current point; therefore, the 100% power conversion efficiency
can be achieved.

In proposed method, the circuit topology itself is the same to
the conventional Class [J inverter, however the uniform driving
pattern is rearranged, i.e., ON or OFF state sometimes appears in
series. Regarding the square waveform patterns as binary codes,
the regular pattern can be written as [1010. . .], which means
[Vi0V;0...] of the bottom switch voltage wgo. In this paper,
instead of the regular pattern, irregular patterns are given, for
example [1100...] or [1000. ..]. Each pulse has half period of
the operating cycle. The total patterns of 16 series pulses, which
equal to 8 operating cycles, are applied to Class D inverter with
six different () factors.

III. ANALYSIS

In regular operation, waveforms of Class D inverter are
simply given based on the hypotheses of a loaded quality factor
(), which is enough high to supply sinusoidal output current i,,
and by lossless ideal elements which ensure 100% efficiency.
In the uniform driving operation, the input voltage of the BPE,
i.e., Vg2 becomes a square wave

Vi (0<i<T)
vgy = «
2700 (2
where w means operating angular frequency. According to the

assumptions, the output voltage v, becomes the fundamental
compornernt of the square wave, that is

e

(2)

where its amplitude V, is obtained by expanding the square
wave into Fourier series

2V,
V, = TI ~ 0.637V7.

v, = V, sinwt

3
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Fig. 2. Ideal waveforms in Class D inverter with infinite (2, in regular
operation.

However, if one of the two conditions, i.e., a high @ or the
uniform driving pattern, is not satisfied, the inverter operation
cannot be explained with the above theory. In case when the
circuit is driven by irregular driving patterns, and/or it has low
() factor, waveforms need to be calculated from the differential
equations. In the circuit of Fig. 1, the circuit equations are

dvc .

Cg T @
di, .

L il Rrio + vs2 (5)

where ve and vy, are voltages across the capacitance C' and the
inductance L as depicted in Fig. 1. The loaded @ factor Q. is
given as

wL_ 1

R~ oCRs

WCR, — 9

©)
In (5), vge takes V7 and zero according to the drive pattern.
Thus, there exist two states, which are State 1 for vgy = Vi,
and State O for vga = 0. These states are symbolized by binary
codes “1” and 07, respectively, for simplification. Each state
is maintained within half period (0 < t < (7/w)). According
to the continuity of inductor current and capacitor voltage, the
initial values of i, and v in half period are given as the final
values in the previous period. In a steady state, the last values
should be equal to the initial values in a total period. Using
this condition, the circuit equations (4) and (5) can be numer-
ically solved with Runge-Kutta formula, then voltage and cur-
rent waves are obtained. Before the calculation, the parameters
have to be given. The input voltage and the load resistance are
given as V; = 1V, and Ry = 1 Q for generalization of the
analysis [14]. For circuits with Ry, # 1 Q andfor V; # 1V,
all voltages v must be replaced by v/ V7 and all currents ¢ must
bereplaced by i - Ry, /Vr. Six conditions of the loaded () factor

o
o
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VARLLLE, AULCOUIL UL UIE wWtdl PELivow it [ 4.

mT Fig. 3. Calculated waveforms of the switch voltage vg» and the output voltage
2 2 v, in Class D inverter with the regular driving pattern [10101 010.. .]. () Q1 =
an = = f z(t) cos(nwt)dt (9) 01 MQr=1.000Qr=3WdQ:=5@Qr=10.(0Q, =20.
Pl
0
mT where a; and b; are fundamental components. Then, regarding
2 . the total period as a basic period, low-frequency components are
bn = mr / a(t) sin(nwt)dt 10 1so calculated as
2 '() mT
2
where a,, aqd b,, are Fourier coefficients, and:c(t) can be v,, ve, = 2T / (1) cos %ut ot (12)
vg2, ete. Using (9) and (10), total harmonic distortion (THD) is me 5
0
'n:l‘
2 k
2 2
0
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TABLE 1T
THE RANGE OF P,, R, AND TOTAL DISTORTIONS OF v,

QL THD

TLD ™D FD P, [W] Rpe[Q)]
0.1 401! —6228%  497¢! —253¢M  64le! —2.53!! 690e7! —2.61et 525¢2 -23%! 423 - 191¢!
1 127e71 3706  297¢! —6.83¢"  325¢7' —6.83e!®  376e! —8.14e?®  197¢% —1.78 568 — 5.08¢!
3 441 - 1316 174¢7 - 55067 180! - 55067 2227 - 6827 43567 - 1.63¢) 6.16 - 2.30¢%
5 2657 — 14607 123¢7 —335¢0 1260 —335¢"0 1597 —425e”  1.85¢F — 15971 6.29 - 53967
10 1.32c2 —8.15¢% 6862 —271¢® 699 - 2.71e® 899 —3.48°%  5.19¢7! - 1.56¢7  6.40 - 1.92¢°
20  646e7 — 13667 35562 — 1987 3622 - 1987 4682 —256e7 1357 - 15571 6.44 — 7.42¢°

Fig. 4. Relationship between the output power P, and the input current I;.
@Qr =01.1MQ =1©Q, =3.{dQ, =5(Q, =10.(f)
QL = 20

where £ is a natural number from 1 to m/2 — 1. Referring to
(11), a parameter of total low-frequency-components distortion
(TLD) which is normalized by the fundamental component is
assumed as

m

2

T (G +d)

k=1

TLD =
aj + b2

(14)

Substituting the output voltage v, tor x(¢), 1HD, TLD, I'D, and
FD are obtained. The harmonics higher than 14th are ignored.
Based on the calculation results, the range of THD, TLD, TD,
and FD about v, plus P, and R, are shown in Table II except
the patterns of all “17, all “0”, and regular one. The relationship
between the output power P, and the input current I is shown
in Fig. 4. Owing to the assumed 100% efficiency, all the plots
are on the line of P, = Rpl;. The discontinuity, which has
been pointed out in this type of regulation method, occurs.
More bits of driving pattern generate more variations of output
waveforms and powers, which make the density of plots higher.
Besides, more bits result in longer cycle, which causes lower
frequency components. Note that, 16-bit patterns include all the
variations generated by 8, 4, and 2-bit patterns. The distribution
of the plots has different characteristics by Q1. In case of

March 24, 2007
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UNaerstood m Fig. d, WNnere /Vimoer of ones means 1ow many
“17s are included in the 16-figure driving pattern. The symmet-
rical characteristic reflects that the equivalent circuits in State 1
and State 0 are symmetric; therefore, [1000000000000000]
and [0111111111111111] have the same characteristic. The
relationship between the equivalent dc resistance and number
of ones is shown in Fig. 6. In case of Q1 = 0.1, Rpc takes
small values around 4 to 20 €2. As J1, becomes larger, Rpc
increases. In case of Qp = 20, Rp¢ stretches to several kilo-
Ohms. According to the calculation results shown in Table II,
all kinds of distortions are in wide range. However, we have
no interest m the patterns which cause high distortion. Some
of the patterns with high distortion have very small basic
component and others include sharp turns in the waveform.
The distribution of the distortions less than five are mapped

TUAT Kurokawa Laboratory
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IS 1arger than 1 HuJ. 1Ne difference between Kl and 11/ means
the total distortion caused by the low-frequency components.
Inhigh @, it can be negligible, however in low (), it becomes
large. The TD and FD seem segments or broken lines, which
tend to be vertical as (Q1, grows. Judging from Fig. 7, there are
few patterns with low distortions. Giving a standard FD = 1,
which means the sum of the distortions of a pattern is equal to
its fundamental component, all the patterns with FD over the
standard are eliminated. The remaining patterns are plotted in
Fig. 8 as P,-I; characteristics. In @, = 0.1 and 1, there are
only 13 and 171 plots in each graph. In cases of Q;, = 3 and 5,
of which characteristics seem to have large continuous ranges,
include 735, and 1315 plots, respectively. In Q = 10 and 20,
there are 2302 and 3238 plots. As (0, takes larger value, more
plots remain in narrow range.



10E OULPUL VOLAZE WUVELOTIN 18 NOMOLISUC 10 e OULpUL CuI-
rent waveform. As seen in Fig. 3(a), at the switching instant, the
output voltage is far from zero because of the low (). There-
fore, this model cannot maintain the high-efficiency operation
achieved by zero-current switching which is the most impor-
tant advantage of Class D inverter. Then, about the model of
Q1 = 1, the dispersed P, — I; characteristic is not suitable for
continuous regulation as shown in Fig. 4(b). Therefore, these
two models with low (), are left out of the research objects.
The model with (), = 20 also has an intermittent P, — I char-
acteristic. However, each segment includes many plots. In addi-
tion, this model is approximate to the ideal model with a high
@ factor. Thus, the model with (07, = 20 remains.

Even though the model with @y, = 3 or 5, as is widely al-
leged, around the regular operation point, the distribution of

[RE /X Papers

to 0.0664 W, under the same condition. Fig. 8(c) seems quite
similar to Fig. 8(d), however, the intervals just over 0.001 W
divide a segment into shorter ones. Short segments are caused
by the low-density remaming plots. The number of remaining
plots 735 in case of ), = 3 is equal to 56% of 1315 in case
of @ = 5. Asto @ = 10, major continuous segments are
from 0.0131 to 0.0253 W, from 0.0291 to 0.0389 W, and from
0.0513 to 0.0594 W. In each range the intervals are kept within
0.001 W,

[V. CIRCUIT EXPERIMENTS

To confirm the waveforms, four models of experimental cir-
cuits with O, = 3, 5, 10, and 20 have been built and tested. A
Class D mverter 1s designed following the conventional design

o
o
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CYUALIOILS assulluy 1uyUyo puowel COLVELSION CLICIeney [ 10].
The following parameters are given; the switching frequency
f = 200 kHz, mput voltage V; = 10.0 V, load resistance
Ry, = 5.0 €, and loaded quality factors of the series resonant
circuit Q7 = 3, 5, 10, and 20. The resonant inductance and
capacitance are calculated by the given parameters; for ex-
ample, in case of @ = 10, L = QrRr/w = 39.79 pH and
C =1/w’L = 1/wQ R = 15.9nF. The designed values and
the measured ones with equivalent series resistance (ESR) are
shown in Table III. The measured Ry, was 4.95 © at 200 kHz.
Two MOSFETs (IRF510) were used as switch devices. The
input port was connected to a dec-power supply with an input
capacitor. The voltage source was kept at 10.00 V in each test.
The upper switch S; was driven through a transformer with a
clamper. The four models were realized by replacing only the
resonant circuit in the same board with the other components.
The gate driver was manually regulated to give an intended
pattern. Various driving patterns were given to the gate drive.
Fig. 9 shows the observed waveforms vsy and v, under
the condition of f = 200 kHz, V; = 10.0 V. Observed
waveforms under the regular operation with the pattern of
[1010101010101010] are shown in Fig. 9(a) to (d), which are in
agreement with Fig. 2 and Fig. 3(c) to (f). The measured values
of the output power were 2.91, 2.76, 2.79, and 240 W for
@1 = 3,5, 10, and 20. The power conversion efficiencies were
80.3,77.1,72.7, and 72.4%, respectively. Arbitrary 10 patterns
were applied to each model. The measured output power P,
and the power conversion efficiency are shown in Table V. The
blanks of the efficiency column mean that the input current
was below the limitation of measurement. For the same reason,
the efficiencies corresponding with the P, < 50 mW have a
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QL L C Lneasured (ESR)  CMeasured (ESR)
3 11.94 pH  53.05nF 11.94 pH (146 mQ)  53.04 nH (49 mQ)
5 19.89 pH  31.83 nF  19.96 pH (148 mQ))  31.97 nH (56 m?)
10 3979 gH 1592 nF  30.78 xH (270 m)  16.02 nH (200 ms2)
20 7958 yH  7.958 nF  80.50 uH (160 mQ)  7.91 nH (350 m2)

possibility of including errors. Generally, the power conversion
efficiency kept more than 70%, however, as () increases,
it reduces slightly. In Class D inverter, the power losses are
caused by the parasitic capacitor’s discharge at the switching
devices and the ESRs in all the circuit components. Using the
measured values shown in Table III and an assumed output
capacitance C,,¢ of the switch device, the output power and
the efficiency are calculated. The O, and the drain—source
resistance Rpg of IRF510 are assumed to be constant at 100 pF
and 1 {2 because the driving pulses were about 5 V. Switching
loss is givenas Coyt - V12 - (N~ [)/16, where Ny is the number
of switching transition during a driving pattern. Conduction
losses are calculated with (8) replacing Ry with the sum of
ESRs. In those calculations the used data of waveforms are
recalculated based on the measured values. The obtained results
are shown in Table V. Approximately, the Tables [V and V
are agreed qualitatively. The differences can be caused by the
reverse current flowing through the body diode of MOSFETs
and undervoltage of driving pulses given for S;.

For instance, observed waveforms with two driving
patterns are shown in Fig. 9, where (e) to (h) are
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TABLE IV
MEASURED QOUTPUT POWER P, [W] AND POWER CONVERSION EFFICIENCY [96]
P, [W] Efficiency [%]
Driving Pattern Qr=3 Qr=5 Qr=10 Qr=20 Qr=3 Qr=5 Q=10 Qr=20
1010101010101010  2.913 2,757 2.797 2.398 80.3 77.1 72.7 72.4
1000100010001000  0.887  0.812  0.738 0.658 82.1 78.9 72.5 74.7
1010000010100000 1.005  0.857 0.753 0.642 76.9 74.5 71.7 69.3
1010101000000000  1.192 1.027 0.839 0.691 76.3 74.7 70.0 68.0
1000000010000000  0.351 0.254 0.203 0.163 80.4 76.9 71.3 72.2
1000000000000000  0.162  0.110 0.068 0.047 81.2 79.5 69.2 71.6
1100000000000000  0.081 0.036 0.011 0.003 80.8 92.1 56.0 -
1010000000000000  0.489  0.360 0.240 0.180 76.7 75.6 71.1 66.2
1000100000000000  0.391  0.289 0.220 0.169 75.1 75.6 71.4 69.5
1100110000000000 0.146  0.062 0.019 0.005 78.7 79.3 21.2 -
1100000011000000  0.160  0.067  0.020 0.005 80.2 82.7 33.0 -
TABLE V
CALCULATED OUTPUT POWER P, [W] AND POWER CONVERSION EFFICIENCY [%]
P, [W] Efficiency [%]
Driving Pattern Q=3 Q=5 Qr=10 Qr=20 Qr=3 Q=5 =10 Qr=20
1010101010101010  3.307  2.675 2.453 2.410 81.3 81.2 71.8 77.4
1000100010001000 0,980  0.717  0.626 0.606 81.3 81.2 77.8 77.3
1010000010100000  1.152  0.793 0.649 0.612 81.3 81.2 77.8 71.3
1010101000000000  1.370  0.959 0.724 0.634 81.3 81.2 77.8 71.3
1000000010000000  0.408  0.242 0.174 0.156 81.3 81.1 71.7 71.2
1000000000000000  0.201 0.109 0.062 0.044 81.3 81.1 77.6 77.1
1100000000000000  0.097  0.035 0.010 0.003 81.2 80.8 76.4 72.1
1010000000000000  0.559  0.343 0.218 0.169 81.3 81.2 71.7 71.2
1000100000000000  0.444  0.277 0.192 0.162 81.3 81.1 71.7 71.2
1100110000000000  0.175  0.061  0.018 0.005 81.1 80.7 76.2 71.3
1100000011000000  0.192  0.067  0.018 0.005 81.2 80.8 76.3 71.4
with  [1000100000000000]; and () to (1) are with 2, Modes 1 and 3, and Modes 3 and 4 give a smooth output

[1100000011000000]. Using these patterns, the waveforms
are calculated, which are shown in Fig. 10. Utilizing those
waveforms, the states of switches can be briefly explained.
The pair of switches performs as one switch; thus, .S; is OFF
while S9 is ON, and vice versa. There are two cases of ON
states; i.e, the switch current flows forward or reversely.
There can be four independent modes; Mode 1: \S; is ON with
forward current, Mode 2: S; is ON with reverse current, Mode
3: S5 is ON with forward current, and Mode 4: S5 is ON with
reverse current. The switching patterns [1000100000000000],
and [1100000011000000] can be denoted with the number
of modes, respectively, [1343134343434343], and
[1234343412343434]. Fig. 10 is useful for understanding.
While vgo is “17, v, is a similar figure of the current waveform
t51. While vgs is “07, v, depicts a similar figure of —igs.
After switching transition, always Mode 1 or Mode 3 appears.
Mode 2 and Mode 4 never appears in series. The same Modes
do not appear in series. The transitions between Modes 1 and

waveform, The transitions from Mode 2 to 3, and Mode 4 to 1
are in one direction, which cause a sharp corner in the output
waveform.

To compare the calculated waveforms with the observed ones,
the voltages of the caleulated ones have to be decupled. The
vgo has distortions in the square wave, which was caused by
the distortions of gate drive waveform through a transformer.
Therefore, the observed output voltage waveform does not fully
accord with caleulation results. In each case, including the reg-
ular pattern, the harmonics and the low-frequency components
were measured with fast Fourier transform (FFT) function of
an oscilloscope. Fig. 11 compares the measured data and the
calculated ones. The calculated data are decupled. The spectra
of vgo are shown in the left side, which should have the same
characteristic by the driving pattern. As shown in the twelve fig-
ures, the calculated spectra have the same characteristics by the
patterns; in addition the observed ones are qualitatively agreed
well with the calculation results in each pattern. The spectra of
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|

Fig. 12. Flowchart of numerical analysis.

Initialize waveform data |

|

output power. Also, as shown in the spectra of v, the calcu-
lated spectra and the observed ones are qualitatively agreed each
other. The difference of the amplitude is mainly caused by the
power losses, accuracy of measurements and using the flat top
window in the circuit experiments. Above results confirm all the
calculation results with the same program in this paper.

V. CONCLUSION

An analysis of Class D inverter with irregular driving patterns
has been carried out. The various waveforms, output voltage,
input current, THD, TLD, TD, FD, and equivalent dc resistance
have been calculated and clarified about various loaded () fac-
tors. Observed waveforms in the circuit experiments showed
good agreement with the calculated ones in time domain and

frequency domain. The analytical results show that, there exist
some ranges where the output power can be controlled as if con-
tinuous using the selected low-distortion patterns. The distribu-
tion of the ranges is different by the () factors. The models with
low @ factors cannot maintain the zero current switching. High
Q@ factor models cause dispersed several groups with similar
output powers. In this paper, a model of (07, = 5 has wider con-
tinuous output power range than the others. The power conver-
sion efficiency can be kept about constant because the zero-cur-
rent switching is maintained against various driving patterns.
Those characteristics show that variation of driving pattern can
be applied as anovel control method to Class D inverter. One can
choose an appropriate model using the analytical results with
taking into consideration the acceptable distortion level and the
requested interval for the output power control.

APPENDIX

The numerical analysis has been carried out with MATLAB
ver.6.1. In this paper, MATLAB ode45 solver in default configu-
ration is utilized, which is based on Runge—Kutta (4,5) formula.
The basic flow is shown in Fig. 12. At first, the values of circuit
elements C, L, {1, the input voltage V7, and the switching fre-
quency f are given. The driving patterns are generated as 16 digits
binary codes inanother program, where thesamecodes asacyclic
pattern are eliminated using bit shift and subtraction. The driving
patterns are given as a matrix (4113 by 16 in this paper) with bi-
nary code 1/0. Each line gives a driving pattern. Waveforms are
calculated by the pattern. Giving initial values, the differential
equations (4) and (5) are solved with MATLAB ode45 solver by
half cycle. The switch voltage vgo takes V; or zero by the digit of
driving code “*1” or “0”. The half-waveform data of v and ¢, are
directly given as functions of time t, which are saved into a matrix
[hw]. The combination of [hw]s forms a whole waveform ma-
trix [W] step by step. Note that, the time ¢ starts from zeroin each
half cycle; therefore it must be corrected for combination with a
parameter ¢; which indicates the total time. Before the combi-
nation, the last line of [W] is deleted to avoid an overlap. At the
end of half cycle, the data of ve and i, in the last line of [hw] are
stored as vy and 4,1, which are given as the initial values for the
next caleulation. When 16 half cycles are combined, the initial
values veoo and 4,0 are compared to the last values vy and ¢,1.
If the differences are within +1e =% and +1e =¥, respectively, the
whole waveforms are obtained, or the same process is repeated
with the same driving pattern. Then, based on the obtained wave-
formdata of veq andi, g, the other waveforms are calculated with
Kirchhoff’s lows. Then, following the definitions, I7, P,, Rpc,
an, b, i, di, THD, TLD, TD, and FD are calculated. These are
added into a data matrix. The above steps are repeated until the
end of the pattern matrix.
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Here, we present the results of evaluation of solar energy potential and photovoltaic
(PV} module performance from actual data measured over a period of more than
2 years in the Gobi Desert of Mongolia. To allow estimation of solar energy potentials
and durability of PV systems in the Gobi Desert area, a data acquisition system,
including crystalline silicon (c-Si), polyerystalline silicon (p-Si) modules, and two
sets of precision pyranometers, thermometers, and anemometer, was installed at
Sainshand City in October 2002. This systemn measures 23 parameters, including
selar irradiation and meteorological parameters, every I0min. High output gain
was observed due fo operation at extremely low ambient temperatures and the module
performance ratios (PRs) were high (>1-0) in winter. In summary, the present study
showed that a PV module with a high temperature coefficient, such as crystalline sili-
con, is advantageous for use in the Gobi Desert area. Copyright ©) 2006 John Wiley
& Sens, Ltd.

KEY wWORDS: PV module performance; solar energy potential; field tests; Gobi Desert

INTRODUCTION

he Gobi Desert, Mongolia, is one of the most promising candidate sites for introduction of the 100 MW
class very large scale photovoltaic systems (VLS-PV) specified by Task 8 “Very Large Scale Photovol-
taic Power Generation Systems’ conducted as part of the IEA photovoltaic power systems program
(IEA PVPS).! Within the framework of the IEA PVPS Task 8§ activity, a conceptual design has been developed
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and a trial caleulation of the costs associated with power generation and construction of a VLS-PV system in the
Gobi Desert area has been performed

The metecrological environmental characteristics of the Gobi Desert may affect the PV system performance
and design specifications. Therefore, it is necessary to clarify the factors that will affect the system design,
operation, and maintenance. However, no useful reference data are available and there have been no case studies
analyzing solar energy resources or performance for PV system installation in the Gobi Desert area.

In the Gobi Desert, Mongolia, we set up two types of photovoltaic (PV) modules and checking devices (e.g.,
-V curve tracer, etc.) as well as meteorological devices to study the characteristics of PV system operation
under such severe environmental conditions. The present study was performed to verify the output simulation
technique for the VLS-PV to confirm the efficiency of using a large-scale concentrated PV system in this area,
and to clarify the specific requirements for system design. To clanfy the actual environmental capabilities (loss
analysis) in the Gobi Desert, we measured meteorological data, such as the amount of solar aradiation and
temperature, and the I~V characteristics of the PV modules.

EXPERIMENTAL SETUP

To determine the potential of VLS-PV in the Gobi Desert area, we installed two types of crystalline silicon PV
module and checking devices (e.g., I-V curve tracer, ete.) as well as a new data acquisition system at the field
site, Sammshand City (44°54° N and 110°07" E} (Figure 1), which is located in the southeastern part of Mongelia.
The data acquisiticn system (Figure 2} is switched on automatically every 10min and records the total solar
irradiation received on the horizontal and 45° tilted surfaces, site meteorological data, and measures PV module
current-veltage (7—V) curves.

The measurement items are listed below:

1. Glebal irradiance on the herizen
2. In-plane irradiance at 45°
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Figure 2. Schema of the data acquisition system

9. Current at maximum power {7,,,)
10. Voltage at maximum power {Vpm)
11. Temperature of modules (77, 15)

The management system software package is installed in the data acquisition system, which is supplied by a
12V battery at measurement time and data are loaded into the 4 MB storage module (SM4M).

The crystalline silicon {c-8i), polycrystalline silicon (p-8i) modules used in this exposure test, and the data-
sheet showing the electrical characteristics under standard test conditions (STC: 1000 W/m?, AM 1-5 and mod-
ule temperature of 25°C*) are shown in Table I. PV module 1 (80 W) uses multi-crystal silicon solar cells
measuring 125mm?® with 12-6% module conversion efficiency. In addition, use of an anti-reflective coating
and back surface field {BSF) structure imiproved cell conversion efficiency to 14%. White tempered glass,
EVA resin, and a weatherproof film along with an aluminum frame were used. PV module 2 (75 W) was pro-
duced by a multistage proprietary texture optimized pyramidal surface (TOPS) process, which maximizes
photon absorption from direct and diffused light. Ultra-clear tempered glass, torsion, and a corrosion-resistant

anodized aluminum module frame were used.

Table 1. Electrical characteristics of photovoltaic {(PV) modules on STC (as manufacturer
datasheets)

PV module name and Type

PV module-1 p-5i

PV module-2 ¢-Si

Parameters Unit

Short-circuit current (i) A 53 4.8
Open-circuit voltage (V) v 213 217
Current at maximum power (fp,) A 4.7 4.4
Voltage at maximum power (Vi) v 171 17.0
Maximum power rating (Pp.x) W 80 75
Temperature coefficient WiC (:373 (321

Copyright © 2006 John Wiley & Sons, Ltd.

Prog. Photovolt: Res. Appl. 2006; 14:553-566
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ANALYSIS METHOD

The field data analysis is divided into three parts regarding environmental conditions, solar energy
resource evaluation, and PV performance. The environmental condition indices include ambient and module
temperatures, average wind speed, humidity, and albedo. For evaluation of the solar energy resource, we use
sunshine duration time, monthly average irradiation, and irradiation variable ratio. The PV Module performance
indices include reference yield, array {module) vield, module performance ratio, temperature modification fac-
tor, and other loss factors of the PV module.

In this analysis, we used 2 years of data collected from March 2003 to February 2005. First, raw data obtained
from the test site were checked and correctable noise was filtered.

Environmental condition indices

The average values of the ambient temperature, module backside temperature, wind speed/direction, humidity,
and albedo were examined to determine the actual environmental conditions to which the PV modules are
exposed. We compared measured meteorological data to the average annual data obtained from a local weather
station, to evaluate the environmental conditions during the measurement period as compared to a normal year.

Solar energy resource indices

The horizontal and in-plane irradiation [kWh/mzlday], duration of sunshine, Thieas Duration [/meonth], and frac-
tion, Fsp, relative to possible duration of sunshine were used as indices of solar energy resources. Here, possible
duration of sunshine was the mean duration for a fine day. We compared monthly irradiance and sunshine dura-
tion time to local weather station data, to evaluate the irradiance during the measurement period.

F SD — TMeas.DuraIion/ TPossible Duration (1)

PV Module performance indices

All system performance data have been evaluated in terms of operational performance and reliability based on
IEC Standard 61724.°

Y, = Ha /Gs (2)
Ya = Eag/Puax (3)
PR = Y,/Y, (4)

The reference yield, Y, is based on the in-plane irradiation, H,, and represents the solar irradiance of refer-
ence, Gg ( = 1000 W/m”), per day and kW, The array yield, Y, is the daily array energy output, Fa 4, per kW
and represents the number of hours per day that the array would need to operate at its rated output power, P ..,
to contribute the same daily array energy to the system as it was monitored. The array performance ratio, PR, is
the ratio of actual array output energy to the energy available theoretically (i.e., Ya/Y,). PR is independent of
location and array size, and indicates the overall losses on the array’s rated output due to module temperature
and incomplete utilization of irradiation.” In this paper, the term “array’ means module.

To evaluate the effects of module temperature on output performance, the temperature, Ky, and other loss
modification factor, K, were determined. These factors were calculated using Equations 5 and 6 from the
module temperature, 1.y, temperature coefficient, op _, and module performance ratio, PR, every 10min.

Copyright € 2006 John Wiley & Sons, Ltd. Prog. Photovelt: Res. Appl. 2006; 14:353-5660
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The other loss modification factor, Ky, covers incident angle, soil, shading, aging, and other unknown loss
factors™® except temperature loss of the PV module.

Kemp 1 ap (Ten  25) (5)

Ko  PR/Kiemp (&)

To compare the actual measured power values, Py rea1, With nominal power values, maximum power values
were extracted from 1 year of data (March 2003—February 2004) under conditions of 1000 4 10 W/m? irradi-
ance, and extrapolated by the temperature correction procedure of JIS C8919% IEC 608917) for the STC.

RESULTS AND DISCUSSION

Environmental conditions

Table IT shows a comparisen of measured ambient temperature to the values for a normal year. Mean error of
ambient temperature was  $-82°C and root mean square error (RMSE} was 0-35°C. Air temperature conditions
were similar to those in a normal year.™!

The daily transitions of ambient and medule temperatures are shown in Figure 3 (Table III) by the monthly
average hour values. The difference between daytime and nighttime air temperature was around 10°C, and the
seasonal air temperature range ranged from 20°C to +30°C. The rise in module temperature was from

Table II. Comparison of measured ambient temperature to those in a normal year [°C]
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(Figure 6). The absclute values of ambient temperature and wind direction did not appear to affect module tem-
perature rise. In addition, the average temperature difference of modules 1 and 2 was 0-55°C (standard deviation
0.38°C), mdicating that these modules have similar heat capacities.

In the warm season, the albede was constant at 0-28 and increased to 0-4 in winter because of snow cover (See
Figure 7, Table V). The winter albedo during the measurement period was less than 30% in an average vear'" as
little snow fell in 20032005, The monthly average humidity was 40% during the warm season, and around 60%
i the cold season.

Solar energy resource

Figure 8 shows the monthly vanation in duration of sunshine and fraction relative to the ideal. The monthly
durations of sunshine in winter and summer seasons were 200 and 300h, respectively, in a normal year. The
fraction of the duration of sunshine was -6 in summer, due to the rainy seasen, increasing to 0-8 or mere in the
cold season. There was only a small difference in the duration between a normal year (Table V) and the mea-
surement period, with a mean error of 4-5h and RMSE of 7-5h.

Figure 9 shews the menthly average values of horizental and im-plane global irradiaticn. The annual mean of
horizontal irradiation was 4-66 KW/m®/day, which was 1-5-fold greater than that in Sappore, Japan. The annual
average of m-plane irradiation was 5.82 kW/m*/day. The tilted irradiation data showed relatively small varia-
tion within a year, as precipitaticn is concentrated in the summer. The mean error between the measured hor-
1zontal irradiation and that in a normal year was  3-4% with RMSE of 7-5%.

PV module performance

Figure 10 shows the monthly average outputs of modules 1 and 2 in comparisen to the rated cutput. The annual
energy outputs of modules 1 (p-51) and 2 (c-51) were 404 and 351 Wh/day, respectively. Standard deviations
were 43 and 40 Wh'day, respectively.

Copyright © 2006 John Wiley & Sons, Ltd. Frog. Photovolt: Res. Appl. 2006, 14:553-566
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For comparison with other types of module, the reference yield, module yield, and performance ratio (PR}
were calculated from measured data as shown in Figure 11 and Table V. The annual reference yields of hori-
zontal and tilted irradiation were 1695 and 2137 h/y, indicating 1695 and 2137 h sunshine hours per year with a
standard of 1 kW/m? solar energy. The annual module yields were ¥, ,,,; = 1961 h'y and Y, ,,,, = 1842 h/y, indi-
cating that each module worked for 1961 h and 1842 h by rated power, Py, in the year.

Figures 12 and 13 show the variations in performance ratio, temperature, and other loss modification factors.
Strong seasonal variations were apparent in the performance of both modules. The PR of module 1 showed very
high values of >1-0 in winter and around 0-85 in the warm season due (o the effect of module temperature. The
other loss was stable at arcund 10%.

Copyright © 2006 John Wiley & Sons, Ltd. Prog. Photovelt: Res. Appl. 2006; 14:553-566
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CONCLUSIONS

Accurate determination of the performance of PV modules is crucial for the design of VLS-PV systems and
their economic evaluation. To develop a conceptual design and calculation of the power generation and con-
struction costs for a VLS-PV system for the Gobi Desert, an autenomous PV module performance monitoring
and data acquisition system was developed. Outdoor performance tests of two types of PV module were con-
ducted in Sainshand City, Mongolia.

The results described here indicated high cutput gain due to the extremely low ambient temperature and the
module performance ratic showed very high values of >1.0 in winter. In summary, the results of the present
study show that PV modules with high temperature coefficients, such as crystalline silicon, are advantageous for
use in the Gobi Desert area. We are obtaining useful information for installation of the VLS-PV system in the
Gobi Desert area, and will continue our field study to further evaluate the long-term performance of PV modules
exposed to the severe environmental conditions in the Gobi Desert.
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Abstract

Short-time fluctuations in solar irradiance will become an importani issue with regard to
future embedded photovoltaic {PV) systems. However, when PV systems are intensively installed,
fluctuation of total output in clustered PV systems is not remarkable because there is the smoothing
effect of irradiance in certain areas. In this paper, a new estimation method of irradiance fluctuation,
which is based on the combination of the Fourier transform and the wavelet transform methods, is
described.
© 2006 Elsevier B.V. All rights reserved.

Keywords: PV system; The smoothing effect; Fluctuation characteristic; Fourer transform; Wavelet transform

1. Introduction

The output of photovoltaic (PV) systems has a short-term fluctuation due to weather
fluctuation. It may cause undesirable effects on an individual power system, and it lowers
the capacity value (kW value) of the PV system. To clarify these phenomena, authors have
studied ‘““the smoothing effect’”” which is to smoother the total area irradiance. Fluctuation

*Corresponding author. Tel./fax: + 8142388 7445,
E-mail address: norihiro(@ce.tuat.ac jp (N. Kawasaka).
0927-0248/% - see front matter © 2006 Elsevier B.V. All rights reserved.
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of PV output is sensitive as for a few PV systems; however, fluctuation of total output
in clustered PV systems is not remarkable because there is spatial-inhomogeneity of
irradiance field in certain areas. According to the smoothing effect, the capacity value
of PV systems is indicated to increase, and problems for utility that occurred by fluctuation
of PV output power can be alleviated. Therefore, it is very important to quantitate this
effect and to develop a new evaluation method.

Several important studies of the smoothing effect have already been approached based
on irradiation data. One of the papers describes a definition of the irradiance fluctuation
degree by using original parameter, moving average and standard deviation of irradiance
data, and demonstrates improvement in kW value [1]. In another paper, the magnitude of
the fluctuation and speed of fluctuation are defined, and the forecast of load frequency
control (LFC) capacity is evaluated [2]. Both the studies have developed simulation
methods of the smoothing effect based on irradiation as the relation between smoothing
effect, area size and the value of the number of PV systems in a distribution network.
Furthermore, the evaluation method is proposed to be more mathematical and to consider
several time scales, and also it 1s necessary to demonstrate accuracy of simulations by using
data obtained in real system. However, both the studies are not used in real measurement
data of the distribution network.

The purpose of this paper is to develop a new evaluation method for smoothing
effect. The evaluation method uses Fourier transform and wavelet transform [3] for
frequency analysis. Measured data can be obtained from February 2004. This study is a
part of “Demonstrative Research on Clustered PV Systems”, funded by New Energy and
Industrial Technology Development Organization (NEDO).

2. Measured data

Irradiance data have been recorded by I1min sampling. Irradiance data used in
analysis were obtained by the special monitoring system that consists of nine synchronized
monitoring terminals from October 1995 to December 1997 (Fig. 1). Those terminals
have been installed on a grid which covers an area measuring about 4km x 4km at
140°05'58" east to 140°09'05" east and 36°02'58” north to 36°05'30” north. The size of the
grid 1s decided by considering the size of typical urban distribution network [1].

3. Approach

Applying the Fourier transform and the wavelet transform one can derive frequency
domain properties of the recorded fluctuation patterns. Unlike Fourier transform, wavelet
transform 1s localized in time by frequency analyzing. In other words, Fourier transform
has only frequency information, and wavelet transform has time information and
frequency information. However, if either of them is chosen, authors think that the
fluctuation characteristic cannot be grasped correctly. Because Fourier transform gives
fluctuation for the whole one day, and wavelet transform gives fluctuation for a local time,
both of them are important in order to understand fluctuation characteristics. The flow of
the calculation is shown in Fig. 2.
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3.1. Fourier analysis

The Fourier transform of discrete data 1s given by the following formula:

N-1
Fky = flme 7/, )
n=>0

Power spectrums (/zy)) are calculated from the square of the coefficients of Fourier
spectrum (F(k)):

Ipgp = % \F k)|’ 2)

The maximum frequency is llﬁ Hz(= 8.33 x 1072 Hz) based on the sampling theorem,
because irradiance data have been recorded by 1 min sampling. This time, power spectrum
more than 1 x 107> Hz was averaged as an example. This is defined as ““average spectrum”.
This corresponds to the frequency domain of LFC. The average spectrum means degree of
the distribution of the fluctuation during the entire day. There is so much of fluctuation

that this value 1s large.

3.2, Wavelet analysis

Wavelet transform W of a signal f(#) is calculated as the inner product of f(x) and the
scaled and shifted wavelet base 1,  (n):
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Daubechies 4 (Fig. 3) has been chosen as a wavelet function (¥;;(n)). Wavelet
periodograms are calculated from the square of the coefficients of wavelet spectrum

(W, k).
I = IWGEE. (5)

This time, the fluctuation cycle for 1 16min was observed as an example. This
corresponds to a level 4 from a level 1. Furthermore, this corresponds to the frequency
domain of LFC. The maximum spectrum is looked up from these periodograms (Fig. 4).
The maximum periodogram is detected and the width of irradiance fluctuation of this time
is calculated. This is defined as ““magnitude of fluctuation”. The magnitude of fluctuation
is not necessarily maximum of the day, because frequency band is limited. The greatest
magnitude of fluctuation can be calculated for the target frequency.
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4. Results and discussion

Result of the flow chart is shown in Fig. 5((a)3, (b)3, (c)3, (d)3) and Table 1. The
horizontal axis serves as magnitude of the fluctuation, and the vertical axis serves as
average spectrum in Fig. 5. Four patterns of a clear weather day (97/8/10), a cloudy
after fine weather day (97/8/19), a slightly cloudy sky day (97/7/4), and a rainy weather day
(97/7/10) are analyzed.

(1) Clear day: The real measured data of 10th July (see Fig. 5(a)) has been set for
evaluation standards as a clear day. Average spectrum and magnitude of the fluctuation
are, respectively, distributed over the range of about 0.005 x 10~ and about 0.05kW/m?
on this pattern. As a result, these fluctuations of irradiance are the smallest among the four
patterns. But as for three points of Brenda, Helen, and Iris, magnitude of the fluctuation is
larger than other points, according to the influence of the shade of the building. Influence
of the shade of the building is contained on irradiation of nine-site average, according to
the smoothing effect.

(2) Slightly cloudy day: There is fast and small fluctuation on each point in area.
Average spectrum is distributed over the range about 1.0 x 1072 1.4 x 1073, magnitude of
the fluctuation is distributed over the range about 0.2 0.4kW/m?®. As compared with clear
day, average spectrum is 200 times or more, and the magnitude of fluctuation is 10 times or
more. Therefore, irradiance of each point had a sharper fluctuation. On the other hand,
shape of irradiance of nine-site average is smoother than irradiance of each point.
Comparing irradiance of nine-site average of this day with irradiance of clear day, average
spectrum is about 30 times, and the magnitude of fluctuation is about the same. Average
spectrum decreases to about 5 and this means that short and fast fluctuations are
contained, according to the smoothing effect.

(3) Cloudy. fine later day: Irradiance of this day has much quick and big fluctuation.
Irradiance fluctuation of each point in the area 1s intense. Average spectrum 1s distributed
over the range of about 5 9 x 107>, magnitude of fluctuation is distributed over the range
of about 0.2 0.6kW/m?>. As compared with clear day, average spectrum is 1400 times or
more, and the magnitude of the fluctuation is 30 times or more. Therefore, irradiance of
each point had a very sharp fluctuation. Comparing irradiance of nine-site average of this
day with irradiance of clear day, average spectrum 1s about 130 times, and the magnitude
of fluctuation 1s about 3 times. Average spectrum decreases to about 1—12 and the magnitude
of the fluctuation decreases to about 1, according to the smoothing effect. This means that
the smoothing effect is acquired well.

(4) Rainy day: On the whole, irradiance is small on this day. Therefore, since the
absolute value of fluctuation becomes small, an average spectrum and the range of
fluctuation become inevitably small: average spectrum is distributed over the range of
about 0.02 x 107 0.07 x 107, magnitude of the fluctuation is distributed over the range
of about 0.02 0.07 kW /m?> Compared to clear day, average spectrum is 1400 times, and
the magnitude of the fluctuation is 30 times. Therefore, irradiance of each point did not
have very sharp fluctuation. Compared to irradiance of nine-site average of this day
with irradiance of clear day, average spectrum is about 2 times, and the magnitude of
fluctuation is about 4. The smoothing effect is not obtained on this pattern.

(5) Summary of results: Fig. 5(b) and (c) are influenced by the short-time moving cloud,
because irradiance drops and spikes are caused by passing fast clouds. Fig. 5(c) was
deadened by the smoothing effect to level of Fig. 5(b). This is the result of “‘the smoothing
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Fig. 5. Classification of fluctuation characteristic; relation of average spectrum and magnitude of the fluctuation.

(a) 10 July 1997, (b) 4 July 1997, (¢) 19 August 1997, (d) 10 August 1997. (1) Irradiance data, (2) result of Fourier
transform, (3) fluctuation characteristic.
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Table 1
Relation of average spectrum and magnitude of the fluctuation

Clear Slightly cloudy Cloudy, fine later Rainy

One-site Nine-site  One-site Nine-site  One-site Nine-site One-site Nine-site
mdividual average mdividual average  individual average — individual average

Average 0.00465 0.00448 1.021 0.129 7.22 0.572 0.0508 0.00891
spectrum

(%107

Magnitude of  0.0170 0.0565 0.221 0212 0.615 0.175 0.0605 0.0352
the fluctuation

(kW/m?)

One-site individual: Anne.

effect”. Fig. 5(a) and (d) are scarcely influenced by the short-time moving cloud, thus this
fluctuation characteristics (average spectrum, magnitude of the fluctuation) become very
small value. The authors arrange the fluctuation patterns according to intensity; Fig. 5(c)
> (b) > (d) > (a). This turn 1s the same as the turn that the smoothing effect has
obtained. The smoothing effect can be quantified in every fluctuation frequency by using
frequency analvsis of Fourier transform and wavelet transform.

5. Conclusion

In this study, authors verified the smoothing effect using frequency analysis of Fourier
transform and wavelet transform using irradiation data. From the results, the authors
obtained the smoothing effect; Fig. 5(c) > (b) > (d) > (a) (in order of effect). This turn is
equal to the irradiance fluctuation. Because of them, it is confirmed that the more the
irradiance fluctuates, the more the smoothing effect is effective. Moreover, the smoothing
effect can be quantified by this evaluation method. In a future work, the authors will model
the simulation to consider the smoothing effect in actual grid including area size, the
distance of station, and number of PV systems.
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Abstract

This paper intends to report the possibility of using an light-emitting diode (LED) as a light source
of a solar simulator for measuring solar cells. In our laboratory the LED solar simulator has been
made up as the test production, and characteristics of monocrystalline Si solar cell have been
measured by using it. As a result, spectral response (SR) and 7-V characteristics of solar cells can be
measured by the proposed method even though light intensity of the LED is in the range of
approximately up to 10mW/cm?. Moreover, I-V characteristics under standard test conditions
(STC) can be estimated by compensation.
© 2006 Published by Elsevier B.V.

Keywords: Light-emitting diode (LED); Spectral response; Measuring method

1. Introduction

For further market deployment of photovoltaic systems (PV systems), solar cells and
modules must maintain sufficient reliability; therefore, technologies for measuring solar
cell performances are very important. At present, the solar cell measurement performance
has been improved, but it is still expensive since Xenon and Halogen lamp, which consist
of the solar simulator have short life and require a lot of electric power. Meanwhile, it is
widely recognized that light-emitting diode (LED) is energy saving, within budget, and
needs a small light source, and recent technical innovation allows us to easily buy the high
luminance LED. In a few studies, the solar simulator using LED as light source has been
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proposed. These simulators use white light LED instead of the previous lamps. However,
their characteristics are not corresponding with characteristics of natural sunlight because
the spectrum of LED is narrower and weaker than the spectrum of natural sunlight.
Therefore, a suitable method is required in order to use the LED solar simulator.

This paper intends to propose that the LED solar simulator makes it possible to obtain
the performance of solar cell, 7 V7 and spectal response (SR) characteristics, by the
methodological measurement. Discrete SR can be measured in such a way that white and
plural monochromatic light and the solar cell i1lluminate each other due to the fact that
monochromatic light LED except white light has bright line spectrum. SR curve can be
estimated by using discrete SR and least-squares method with physical model, and
photocurrent under standard text conditions (STC) is obtained from SR curve. Moreover,
the LED solar simulator is able to measure / V characteristics of STC by assuming that
I V characteristics of Si solar cells are independent of light intensity.

2. Theory and experimental
2.1. Measuring method using LED

Fig. 1 shows the measurement procedure of SR using LED. A test cell is irradiated by
monochromatic light together with white light as bias light, and its short circuit current
{{4) 1s measured. Secondly, the cell 1s only exposed to white light and /. is measured in the
same way. The difference of 7 in the two conditions divided by incidence monochromatic
irradiance is SR at the wavelength of the illuminating light. SR at discrete wavelength are
derived by three monochromatic LED (this time, blue, red and infrared). Experimental
discrete are supplemented by a theoretical curve of photocurrent, and then the whole SRs
curve of the test cell is calculated [1]. The SR curve multiplied by the reference solar
spectral distribution calculates photocurrent under STC. I V' characteristics are measured
under two different irradiations and calculated under STC by correction.

Solar cell output [A]

Irradiate Mornochromatic light

W+ White light (as Bias-light)

¢

Number of Mono- Irradiate Only White light
chromatic light (3 times) ¢ _________________

(ISG,MJrW - Isc\,W) / IrM*
= Spectral Response (SR) [A/W]

Discrete Spectral Response (DSR) I[:“# SR Curve fit to DSR

Fig. 1. Measurement procedure of spectral response using monochromatic hight.

*I, Incident radiation of
monochromatic light [W]
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2.2. Specification of LED solar simulator

LED solar simulator for a 100 x 100 mm? solar cell is manufactured for trial (Fig. 2).
This equipment has LED in four colors (blue, red, infrared and white), and the
specification is shown in Table 1. Their angle of beam spread is around the middle (about
30%), and lamp-type LED is used. Each LED is arranged equally (7.62 mm between each
LED, and 15.24 mm between same color). Fig. 3 shows schematic illustration of the LED
arrangement. 14 x 14 LED per color are laid out on a grid, and the total number of LED is
784. The total area of light source is about 205 x 205mm?. The distance of irradiation is
adjusted with spacers. This time, light source irradiated a measuring object from a height
of 84 mm, and had illumination unevenness per color of about 5%. The arrangement has
lower illumination unevenness calculated by illuminant simulation [2] (Fig. 4).

The simulator is electrically designed as follows. A voluntary current can be passed
through the LED controlled at each color and voluntary light intensity is available.
Typical forward current (/) of LED is 20 mA (in the case of infrared, 7 = 50mA) in this
SR measurement.

3. Results and discussion
3.1. Measurement of SR

The relation between the [g and the irradiance of LED light was examined with a
spectroradiometer for grasping the irradiance in measuring (Fig. 5). After this, the
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Fig. 3. Schematic illustration of LED arrangement.
4
Infrared

L

Relative Trradiance [Jo/nm]
o

300 900 1100
Wavelength [nm]

Fig. 4. Wavelength characteristics of LED built-in solar simulator.

irradiance of LED light is derived from each [r (one needs to be careful about the
irradiance time change of LED). Discrete SR measured by three LED was compensated
with the photocurrent theoretical curve by least-squares method and the calculated and
measured curve is compared (Fig. 6). Consequently, the measured and calculated
photocurrents under STC were, respectively, 3.76 and 3.14 A, and the estimation 18 lower
than the measurement one. The current is derived SR multiplied by AM1.5G standard
spectrum.

3.2. Measurement of I- V characteristics

Shown in Fig. 7 are the experimental / } characteristics illuminated with white LED
light, the calculated and the measured 7 V' curves under AMI1.5G spectrum. I V/
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Fig. 5. Relations between each LED forward current (Jg) and wrradiance.
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Fig. 6. Comparison of calculated and measured SR curve (* measured by AIST).
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Fig. 7. Comparison of the results of calculated and measured 7-¥ curve under 1-Sun (* measured by AIST).

Table 2
Measured and calculated value

Calculated value Measured value
Voo (V) 0.51 0.60
Iy (A) 3.02 3.76
Fmax (V) 0.37 0.46
Tax (A) 2.47 3.37
F.F. (%) 58.59 68.50

characteristic under STC can be calculated from

Vo = Vi(=V3),

L =L +(E; - El)%:

where Eq, V4, I) and Es, V3, Is are the irradiance, voltage, and current of the
experimentally known I (V), respectively. E,, V; and [, are those of the unknown f
(V) |3]. The calculated and measured value is compared in Table 2, the former has smaller
curve than the latter. The difference is caused by the errors including each irradiance under
experiment, because the compensation widens these errors by over 10 times. Therefore, the
accurate measurement of LED irradiance before the cell characterization is important.
Any way, I V characteristics can be estimated roughly by correction.
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4. Conclusion

In the present work, the four color LED (including three monochromatic) solar
simulator is used for as light source and the measuring method of solar cells has been
demonstrated by it. Assuming that SR and / V" characteristics of mono-crystalline Si solar
cell do not depend on light intensity and wavelength, a test cell is measured. As a result, the
estimated value is lower than the nominal one and examining the dependence will be
required in the future. Nevertheless, it 1s notable that the low intensity light like LED can
estimate the / 17 characteristics under AM1.5G spectrum.
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A Novel Microcontroller for Grid-Connected
Photovoltaic Systems

Hirotaka Koizumi, Member, IEEE, Tamaki Mizuno, Takashi Kaito, Yukihisa Noda, Norio Goshima,
Manabu Kawasaki, Ken Nagasaka, and Kosuke Kurokawa, Member, IEEE

Abstract—The purpose of this paper is to develop a novel
microcontroller for grid-connected photovoltaic (PV) systems. As
a prototype model, a 100-W-class module-integrated converter
composed of the proposed controller and a flyback inverter has
been built and tested. The prototype model is designed to satisfy
the Japanese grid-connection guideline. Basic functions as those of
a grid-connected PV inverter, such as the maximum-power-point
tracking and the anti-islanding protection, have been confirmed in
the experiments using a distribution network simulator located in
a laboratory. This paper presents the description of the controller
and the experimental results. A microcontroller has been devel-
oped with a 50-MHz-class microcomputer and simple interfaces.
By revising the program, the proposed controller can be applied
to various types of PV systems or grid-connected equipment.

Index Terms—AC module, anti-islanding, grid connection,
grid-connected photovoltaic (PY) inverters, islanding detection,
maximum power point tracking (MPPT).

I INTRODUCTION

OOF-MOUNTED systems, which are the most popular

photovoltaic (PV) systems for residential use, are expo-
nentially increasing in recent years. When these roof-mounted
systems are connected to the utility grid system, the grid-
connected PV inverter needs to satisfy the standards for in-
terconnection. Roof-mounted systems are classified into two
types: one has a central PV inverter for interconnection, and
the solar panels are commected with dc wirings. The other
one, which is called the “ac module™ has a small PV inverter
behind each panel, which is individually interconnected with
ac wiring. In the case of the central PV inverter, wires from
PV modules are conmected together in series and/or parallel.
However, it is known that the partially shaded modules perform
as resistance components. They reduce the total output power
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from the series/parallel-connected modules [1]-[3]. The same
phenomenon is caused when several PV modules have different
I—V characteristics by means of the difference of irradiation
or temperature. Residential areas usually bristle with buildings
and plants, which often cast their shadow on the roof-mounted
PV arrays. Furthermore, as roofs are in various shapes and
gizes, therefore the generated power from each PV module is
different by location. The ac module has an advantage in these
issues. It can track and output the maximum power by each PV
module [4]. It never performs as a resistance component against
the other modules.

To develop a new ac module that is suitable for the Japanese
grid-connection guideline [5], the “Regional Consortium Re-
search and Development Program” was carried out. Our work-
ing group WG-2 took charge of the controller part. In the
process of the development, system configurations composed
of some ac modules, and the requirements for the controller
in each configuration were discussed. A conventional ac mod-
ule has all the functions of a power conditioner; however, in
a roof-mounted system, several functions can be collectable
in a master controller. As a variation, those functions can
be set in a concenfrated interconnection unit in or by the
circuit breaker (CB). Consequently, the proposed controller
is designed as an all-in-one system. The controller remains
independent, and the interfaces are simplified to be adaptable
to an ac module with various types of inverters designed for
erid connection, a CB as an interconnection unit, and a master
controller. The proposed controller is composed of a 50-MHz-
class microcomputer and simple interfaces. A prototype of the
module-integrated converter (MIC) for the ac module, which
is composed of the proposed controller and a flyback inverter
built by another working group WG-3, has been built and tested.
Basic functions as those of a MIC including maximum power
point tracking (MPPT) and islanding protection have been
confirmed. Islanding tests with a distribution network simulator
have been carried out. The MIC shows excellent performarice in
islanding protection. These functions are adaptable not only for
an ac module controller but also for a master controller or for
the equipment for interconnection. Furthermore, by changing
the programs, it can be adjusted to any type of guideline for
interconnection.

II. Basic MODEL

A model of an MIC with the proposed controller is shown in
Fig. 1, except the master controller. The MIC locates between
the PV module and the utility grid. The input is a direct

0278-0046/$20.00 © 2006 TEEE
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four input and one output analog ports and five input and three
output digital ports. Analog signals of the measured voltages
and currents are sent through the analog input ports. The output-
current level is indicated through the analog output port. Two
of the five digital input ports are used at the present stage.
One conveys the controller whether the inverter is operating
or not. The other one conveys the condition of the inverter
board, i.e., if it can start or not. The remaining three can be
used for indication of emergency stop or internal fault, ete. A
digital output port is used to send a start/stop signal. Another
port sends a standby command, which makes the inverter board
ready to start. The rest is for turning on and off the interconnec-
tion CB, which is not used at the present stage. The measured
voltage and current waveforms sent through the analog ports are
changed into digital data and stored into the memory PLDs. The
controller has two buffers. Assuming that the grid frequency
range is between 47.5 and 52.5 Hz, the internal cycle clock
of the controller is set at 34.4 Hz. Each buffer stores the data
for one and a half cycle. The two buffers alternately starts
by the internal clock; therefore, some part of the waveform
data is stored into both buffers. Owing to this overlap, the
monitoring is uninterrupted. It is stored in each buffer with at
least one whole cycle of the grid-voltage waveform. In a series
of data, there should be three zero-cross points. Each waveform
is quantized in 256 levels and encoded into an 8-bit binary code
with a sampling clock of 18.8 kHz. The zero-cross points are
estimated with linear approximation. The grid frequency, its
harmonics, the rms values of ac, and the average values of dc
are calculated with the CPU (SH7615 HITACHT [8]).

B. Fundamental Flow

A fundamental operating flow is shown in Fig. 4. The MIC
starts with the starting command. During the operation, the
controller continues monitoring the system condition from the
data of input and output voltages and currents. When the grid
voltage, which is equal to the output voltage, is within the
standard ac voltage range (from 95 to 107 V, which was decided
by the Japanese Electric Utility Law), the controller sends a
memory control block (MCB)-close command. To avoid the
repetition of the MCB being turned on and off, the starting
condition range is narrower than the others. Second, the grid
frequency, the grid voltage, and its third harmonic component
are checked. The ranges of the frequency and the third harmonic
component are based on the draft specification of the inverter
for the ac module on [5, Appendix I, p. 178]. The range of
the voltage is decided, taking into consideration the voltage
range from 80 to 115 V shown in the same draft. Here, the
grid frequency and the third harmonic component are checked
before interconnection. The grid voltage is checked again,
which is a backup function of the starting one. When these
three conditions are satisfied, the inverter moves to the standby
position. Then, the condition of the PV module is checked.
If the open-circuit voltage of the module is in the dec input
voltage range (from 7 to 50 V), the controller sends a starting
command to the inverter board and starts it up. The dc voltage
range is decided by the specification of the inverter board,
therefore, an appropriate PV module has to be chosen. The
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Fig. 4. Flowchart.

input and output voltages and currents, the grid frequency, and
the third harmonic component of the grid voltage waveform are
calculated based on the stored data. During the grid-connected
operation, the controller always monitors the grid condition.

The islanding detection and protection function is based on
a combination method, which is proposed as the active—passive
series method [9]. The islanding function used in the proposed
controller has the following advantages [10], [11].

* As an active detection function, the output-current re-
duction method is used, which prevents the interference
between grid-connected PV inverters.

* The output-current reduction is achieved in the same
process as the MPPT function.

* The dead time after the insensitive—passive detection pre-
vents the false detection and the stop by the instantaneous
voltage drop.

+ The function is written as a program; therefore, the para-
meter values are easily adjusted.

At the first step, a remarkable change is detected with
the insensitive—passive detection algorithm. The insensitive—
passive detection range is matched with the “‘interconnection
starting range.” The grid frequency, the grid voltage, and its
third harmonic component are checked. If one of them is out of
the proper range shown in Table [, the dead-time counter starts.
Taking the instantaneous voltage drop into consideration, the
dead time is set to 400 ms [11]. The lower limit of the grid
voltage 90 V is also based on the data of the instantaneous
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TABLE 1
THRESHOLDS AND OPERATION RANGES
Items Starting |Interconnection | Standby Insensitive- Sensitive-  |Grid connected
1 condition| starting range |condition |passive detection |passive detection |operation range
Grid voltage [Vims] 95-107 90-110 90-110 80-115
Grid frequency [Hz] - 48.5-51.0 48.5-51.0 - -
3rd harmonic 3 3
component [%] - - - B -
Ratio of grid- 0.1
frequency change [%] - B B . -
Ratio of 3rd harmonic 0.5
component change [%] - - - - h
DC input voltage [V] - - 7-50 - 7-50

voltage drop. Within the dead time, the grid condition is also
checked by the sensitive—passive detection algorithm. This
function observes the ratio of the grid-frequency change and
that of the third harmonic component change. If one parameter
exceeds the threshold, it reduces the value of the output-current
indication to half of the present value. If the system is in
islanding phenomenon, the current reduction amplifies the
fluctuation by each cycle. In this case, the remarkable change
should be repeatedly detected by the insensitive—passive
detection function until the end of the dead time. When it goes
over the dead time, the controller puts the inverter into OFF-
state. This function operates as an active detection function
required in the guideline [5]. Small deviation with possibility
of islanding, which is not detected by the insensitive—passive
detection function, is also detected with the sensitive—passive
detection algorithm. Tts thresholds are based on the simulation
and the experiments [11], [12]. Table I shows all the thresholds
and the operation ranges used in the controller.

The MPPT function is based on the algorithm that consists of
the incremental conductance method (IncCond) and constant
voltage (CV) method [13]. A flowchart is shown in Fig. 5. In
the program, the present operating position on the I —V curve is
found with the de input voltage and current values by each cycle
using their average values. Comparing to the present value and
the last one, a target value is calculated, following the IncCond
method and with it given as a dc target voltage. The output
current is controlled to make the input de voltage close to the
objective. When the monitored dc voltage comes close to the
aim (within 0.05 V) or when it never comes within the range
for a while, the program renews the data and calculates the
next target voltage. When it is difficult to keep the maximum
power point by means of rapid changing of irradiation or when
the monitored input voltage is less than 15 V, the algorithm is
changed to the CV method [14]. In this mode, after waiting
25 cycles, the target voltage is kept to 85% of the open-circuit
voltage Voo from 10 to 20 s [14].

Before going to the next cyele, the de input voltage is
checked because there is no other check process in the operation
loop. The grid voltage is also checked with a wider range from
80 to 115 V, which is shown in the draft specification [5]. If
one of them is out of the range, the inverter immediately puts
into the OFF-state. Owing to the thresholds, in case of a serious
fault, the MIC can stop without waiting for the end of the dead

No Yes
CV flag OFF
Initializing CV mode timer

Initializing parameters Initializing
CV flag ON approaching timer
Output current 0
for 25 cycles dV="Vn- Va1

dl = In - In-1

CV mode
timer start

o
Vr=Vr+ AV‘ Vr="Vr-AV ‘ Ve=Vr-AV | [Vr=Vr+ AV‘
[ | I I
K2
\ Va-1=Va ‘
In-1=In

Approaching
timer start

Fig. 5. Fowchart of the MPPT process.

Monitoring
Store Voo

time. The system stops if trouble is found in the controller or
the inverter, or if stopping command is giver.

Several functions can be integrated into one common unit
in a group of ac modules via communication system. They
are shown in a block of the master controller in Fig. 1. These
functions are also installed into each controller board at the
present stage.

III. D1scussioN ON TOTAL SYSTEM

As a group system, several models composed of some ac
modules are expected. As shown in Fig. 1, some functions
installed into the controller board are able to be separated and
set in a master controller, which is shared in one group. Fig. 6
shows three models of the total system. The Japanese grid-
connection guideline requires an interconnection CB between
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simulator [15], and the input ports are connected to a Solar cell
array simulator (Kernel) composed of a PWM-controlled cur-
rent source with 160-kHz switching frequency and a 125-kHz
PWM-controlled shunt regulator, which forms an /—V charac-
teristic under the given condition using DSP [16].

At first, the basic operation following the algorithm was
tested. The gain of the isolation amplifiers was adjusted. Fig. 8
shows the observed waveforms in an interconnecting test. The
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B. Islanding Tests

Before the islanding tests of the MIC with the proposed
controller, two types of conventional 100-W-class inverters
(inverter X and Y) were examined with the reduced-scale dis-
tribution network simulator. This method is not for strict tests
following some standards. A configuration of the test system is



At least, these inverters have the possibility of islanding under
these test conditions with repeatability.

Then, parallel operations were tested with five X inverters.
Fig. 12 shows the results of the parallel operations with the
RCM and RCL load. The test ranges were extended around
the points where the islanding phenomenon was observed.
The islanding range was clearly spread than that of a single
operation. These results show that parallel operation of five

REHRX Papers N

X inverters made it easy to cause islanding comparison with
the single operation. These conditions are more difficult for
inverters to detect the islanding phenomenon. Therefore, they
are rather suitable to test islanding detection and protection.

In order to verify the islanding detection function of the
proposed controller, the single and parallel operations were
tested. At first, the sensitive—passive detection function was
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phenomenon over 1 s was observed, as shown in Fig. 13, at the
balanced load condition, which was similar to the phenomena
observed at the previous tests with the conventional inverters.
Then, the sensitive—passive detection function was enabled and
tested. Fig. 14 shows the test results with the RCM and RCL
loads. Based on the obtained results, it is confirmed that the
proposed system is able to detect the islanding phenomena
within 100 ms and that the threshold of each detection method
is adeauate to detect islandine.

TUAT Kurokawa Laboratory
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Fig. 15. Measured islanding time under the parallel operations of four MICs
with the proposed controller with RCM and RCL loads. (a) Maximum islanding
time and (b) average islanding time with RCM load, and (¢) maximum islanding
time and (d) average islanding time with RCL load.

To test them under more severe conditions, the same four
inverters with the proposed controller were connected in par-
allel. Fig. 15 shows the islanding test results of the parallel
operations. In these tests. no islanding phenomena over 1 s were
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VPm:ax Voc
Voltage [V]

Fig.5. Example of normal and stepped I-V curve.
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IPC() = E[PL = EAS _[,PL ...................... (18)
ZZIT,

Ipco : PCS-OFF #8%k [kWh]

252 IEEJ Trans. PE, Vol.127, No.1, 2007
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Fig.4. Calculation result of amount of energy discharge.
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Table 4. Islanding detection time limit by motor load (170 W).
Reactive power (Var)
-10% -5% 0% +5% ti- IU "/u
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Fig.8. Islanding detection time limit by motor load.
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Fig.9. Frequency analysis result after 0.3 seconds after

it blacks out (motor load 170 W).
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Table 5. Frequency analysis result after (0.3 seconds after it blacks out (motor load 170 W).
Reactive power (Var)
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Quantitative Analysis of Output Loss Due to Restriction for
Grid-Connected PV Systems
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SUMMARY

The voltage of power distribution lines will be in-
creased due to reverse power flow from grid-connected PV
systems. In the case of high-density grid cormnection, the
voltage increase will be higher than in a stand-alone grid
connection system. To prevent overvoltage on the power
distribution lines, the PV system’s output will be restricted
if the voltage of the power distribution line is close to the
upper limit of the control range. Because of this interaction,
the output loss will be larger in the high-density case. This
research has developed a quantitative analysis method for
PV system output and losses in order to clarify the behavior
of grid-connected PV systems. All the measured data are
classified into loss factors using a l-mimute average of
1-second data instead of the typical 1-hour average. The
operation point on the I-V curve is estimated to quantify
the loss due to the output restriction, using the module
temperature, array output voltage, array output current, and
solar irradiance. As aresult, theloss dueto outputrestriction
is successfully quantified and the behavior of outputrestric-
tion is clarified. © 2006 Wiley Periodicals, Inc. Electr Eng
Jpn, 158(2): 9-19, 2007; Published online in Wiley Inter-
Science (www.interscience wiley.com). DOI 10.1002/
eej.20452

Key words: photovoltaic; evaluation; oufput re-
striction; loss; quantitative analysis.

Contract grant sponsor. New Energy and Industrial Technology Develop-
ment Organization (NEDO).

1. Introduction

Since the Kyoto Protocol came into force on February
2003, the introduction of renewable energy sources is be-
coming an increasingly important task for Japan to realize
sustainable development and to reduce global warming gas
emissions. Among renewable energy sources, photovoltaic
(PV) systems are promising because they can generate
electricity, which is one of the most useful energy forms,
from the unlimited sunlight. However, when a few hundred
residential PV systems are connected into the local power
distribution network (i.e., “clustered™), reverse power flow
from the PV systems may cause voltage rises more fre-
quently than when a few PV systems are grid connected. To
prevent overvoltage on the power distribution line, the
power conditioning subsystems (PCS) of Japanese PV sys-
tems have a function to restrict output. As a result of this
function, if the grid voltage reaches the upper limit of the
control range, the PV system’s output power will be re-
stricted even though the PV modules are receiving enough
sunlight to generate more electricity.

One way to avoid this output restriction is a battery-
integrated PV system. A demonstration research project on
clustered PV systems has been conducted since December
2002 by the New Energy and Industrial Technology Devel-
opment Organization (NEDO) to investigate the behavior
of “clustered” PV systems. This research is intended to
clarify the issues of clustered PV systems, develop battery-
integrated residential PV systems as output restriction
avoidance systems, demonstrate their effect in the commer-
cial power grid by installing a few hundred PV systems in
the demonstration project area, and develop simulation
models for potential issues [1]. This paper uses data from
this demonstration project and develops a quantitative

© 2006 Wiley Periodicals, Inc.
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method for the analysis of PV system performance and
losses, including losses due to output restriction, in order to
clarify the issues of clustered PV systems.

2. Output Restriction Function of PV System’s PCS

In grid-connected residential PV systems, the gener-
ated electric power will be supplied to house loads and the
excess power will be fed into the power distribution net-
work. As a result of this reverse power flow, the voltage at
the connecting point will be raised as shown in Fig. 1. The
amount the voltage rise will become larger as the number
of connected PV systems increases, and in the clustered
case, the voltage may exceed the upper limit of the power
distribution line, which is 101 £6 V or 202 £ 20 V in Japan.
Thus, Japanese PCS are equipped with an output restriction
function to prevent overvoltages. Output restriction func-
tions can be classified into two types, reactive power control
and active power control (regulation); however, since reac-
tive power control is not sufficiently effective in lowering
the voltage in power distribution lines, active power control
is much more popular [1]. Examples of control methods in
Japanese commercial PCS are summarized in Table 1.
Phase advance reactive power control will shift the current
phase and change the power factor between 1 and 0.85, and
active power control will regulate the output current in
order to reduce the output power. The PCS monitors its own
output terminal voltage and uses it for the starting voltage
of output restriction. However, there is a voltage drop
between the PCS output terminal and the connection point
due to the resistance of the drop wire, and thus the PCS may
not need to start restriction at 107 V. This is one of the
reasons why the starting voltages of output restriction are
not exactly the same for all PCS. It has been pointed out
that this kind of variation may cause the concentration of

rig. 1. 1mage ol vVOItage I1s¢ aue 1o e reverse power

flow from PV systems.
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Table 1. Types of overvoltage protection for PCS
Reactive power control
Types
Default / Range Speed
A 112v/ 107V - 112V PF=1t0 0.85 in 2 to 2.5sec
B None None
C None None
D 107V / 106.5V PF=1 to 0.85 in 10sec
Active power control (Regulation)
Types
Default / Range Speed
A After PF reached 0.85 2A/sec, 100% to 0%=10sec
B 107V / 106V — 120V 43mA/dsec
C 109V / 107V - 110V Immediately 0%
D 109V / 107.5V 100% to 0% in 4 to 10sec

PF: Power factor

output restriction in particular PCS, while no restriction
occurs in others; this variation should be minimized [1].

3. Quantitative Analysis of Losses

3.1 Loss factors of PV systems

The input energy of the PV systems is solar irradia-
tion. Solar irradiation will be converted to DC electric
power in the solar cells and the DC power will be inverted
to AC power in the PCS. Since deployed PV systems are
not always operating under optimal conditions, there will
be losses due to several factors [2]. Major loss factors of PV
systems are summarized in Fig. 2. In the beginning of
energy conversion, the incoming solar irradiance, the input
energy, will be reduced by shading, reflection due to the
angle of incidence, and dirt on the surface of PV modules

Fig. 2. Loss factors of PV systems.
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ACIdpcg] 18 WIE FLD AL OUTPUT CUTTENT OT PRase 1 (A)
AClapcs,isthe PCS AC output current of phase 2 (A).

Since all the analyzed PV systems were residential
PV systems and the capacity of the PCS is between 3 kW
and 5 kW, 0.1 A is used in this paper. This figure might not
be valid if a larger PCS capacity is used in the system.

(2) PCS capacity shortage case 1

The inversion efficiency of the PCS is normally
higher in the vicinity of its rated output power and becomes
worse along with decreasing input power. When the capac-
ity of the PCS and that of the PV array are almost the same,
the operation time at low input power will be relatively
longer than for a smaller PCS. The initial cost of the

nal voltage is in the control range. When the voltage ex-
ceeds the upper limit, the PCS will shift the operation point
on the /-V curve toward the open circuit voltage (V) of
the PV array and regulate the input DC current to reduce its
AC output power (see Fig. 4). To detect this output restric-
tion, the PV array output voltage and array temperature are

Fig. 4. Operation point during output restriction.

plotted on a scatter diagram as the Y axis and X axis,
respectively, and data under the high-voltage condition are
separated by using Eq. (4), which represents the locus of
Vpmax The array output current and the irradiance at the
array plane are also plotted on the scatter diagram as the ¥
axis and X axis, respectively. The data under current regu-
lation are separated by using Eq. (5), which defines the
range of Ip,,, The data at voltages higher than Vp,,,, and
currents lower than Ip,,, are assumed to be data under
restriction:

X 1s the 1rradiation at the PV array plane (kW/m-),
Ipax 18 the PV module’s output current at MPP (A),
Nyaranier 18 the number of parallel-connected PV mod-
ules (strings),

Clss 18 @ constant, and

Crange 18 a constant defining the range of Ipy,, (A).

12
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the restriction mode after the exclusion of data which have
already been assigned to other loss factors. An example of
a scatter plot of the array output current and irradiance is
shown in Fig. 6.

In Egs. (4) and (5), the constants C, Cj,,, and Cyype,
are used to improve the accuracy of the detection of restric-
tions. It is better to set these constants for each PV system,
since they depend on the type of module, the array string
configuration, and the system specification. However, C =
0.97 and C,,,, = 0.95 are used in this paper as optimum
constants derived from the analysis of eight systems.
Crange 18 s€t to 1 A, which is 5% of the typical Ip,y, (=20
A) of residential PV systems.

Using the above conditions, the data are assigned to
restriction mode if the voltage is high and the current is low.
They are assigned to output restriction case | if the PCS
output terminal voltage is higher than 107 V, and otherwise
to case 2. Case 1 is a typical output restriction to prevent
overvoltage on the power grid. Case 2 includes the situation
in which the temperature of the PCS increases and overtem-
perature protection reduces the output power.

Mg, 3. DCAUCT A1dgrdln 01 aiTdy Oulput volldge dna
array temperature.
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irradiance.

(4) Temperature correction of array output power

After the above steps, remaining data which have not
been assigned to any loss factors are temperature-corrected
to STC temperature (= 25 °C) as follows:

T TH(ar - (Te=25) ©)

max

Pur

where

P,ris the temperature-corrected array output (KW),

Olpmayx 1S the temperature coefficient of P, (1/°C),
and

T is the PV module temperature (°C).

(5) PCS capacity shortage case 2

The PV module temperature at STC is 25 °C, but the
module temperature is usually higher than 25 °C under
irradiation in Japan. Due to the negative temperature coef-
ficient of crystalline silicon PV modules, the temperature-
corrected module output power (P47) will be higher than

PUWCL, UIT uald 1l1ay vUc allColCu vy HIUVIILE CIVUUD UL VUICT

accidental shading. Since there is some distance between
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ceeding 0.03 kW/m*.

Equation (5) is also used to judge whether there is
some output energy loss due to the fluctuation after separa-
tion. Only data below the range of Ip,, are classified as
including fluctuation losses.

3.6 Loss quantification

After the above steps, the remaining data which have
not been assigned to any of the loss factors can be assumed
to be data with minimal loss. Using these minimal loss data,
the ideal output power during the evaluation period is
calculated. After the calculation, the differences between
the ideal power and actual output power are treated as
losses. To calculate the ideal output power at each irradi-
ance level, the ideal performance line (IPL) used in the SV
method is employed. The output power of deployed PV
systerns is normally affected by dirt and by degradation or
variation of the peak power, and thus the sum of the peak
powers of the modules is not the same as the array’s peak
power. IPL represents this kind of characteristic. The IPL
data are those in which the losses due to PCS oft, PCS
capacity shortage cases | & 2, output restriction cases 1 &
2, and fluctuations are minimal. All of the data which will
be used for the IPL calculation have already been tempera-
ture corrected by Eq. (6). Since at least one data point with
minimal loss for each irradiance level is needed in order to
calculate the IPL, the evaluation period must be at least 3
weeks. The IPL is calculated using the following steps.

1. Select the minimal loss data (see Section 3.5).

2. Perform temperature correction [see Eq. (6)].

3. Select the data at an irradiance of more than 0.4
kW/m?.

4. Plot the selected data on the scatter diagram of the
array output as the Y axis with the irradiance as the X axis.

5. Calculate the regression line which will pass
through the origin and the top 3% of the data.

The reason why we select the data at an irradiance of
more than 0.4 kW/m? in step 3 is that most of the data on
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Fig. 7. Example of ideal performance line.

cloudy days and at peak reflection loss are usually observed
when the irradiance is less than 0.4 kW/m?. Figure 7 shows
an example of the IPL calculation.

After the calculation of the IPL, the following equa-
tions are used to quantify the losses for each factor. All of
the data have already been classified in Section 3.5. Equa-
tions (9), (10), (11), (12), (14), (15), (16), and (17) are used
exclusively for the data rather than cumulatively:

Lip = Eas = Eipr (8)
lpco = ErpL ©)
lrccr = ErpL— Ea (10)
log1 = ErpL = E4 (11)
logy = Egpr, — E4 (12)
It =Esr — Ey (13)
Ipcca = Egpp — Ppes - [hour, min or sec]  (14)
It = Ppcg - [hour, min or sec] — F4 (15)
lp = Eipr — Ear (16)
lo = Eip, — Ear (a7
lpcs = Epcs — Py - [hour, min or sec] (18)

where

E;p; 18 the output power on the ideal performance line
(kWh),

E, is the array output energy (kWh),

E,ris the temperature-corrected array output energy
(kWh),

lipr is the loss due to dirt and to degradation and
variation of module peak power,

lpco 1s the loss due to PCS-off,

Ipccy 18 the loss due to PCS capacity shortage case 1,

lor1 1s the loss due to output restriction case 1,

lory 18 the loss due to output restriction case 2,

l71s the loss due to temperature increase,
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time needed to supply the total input irradiation of the PV
system from the STC irradiance. The system yield is the
time needed to generate the total output energy from the
system rated output power. The ratio of each loss to the
reference yield is also calculated. It should be noted that a

days for each analysis was about 30 days. Figures 8 and 9 FIg. 1V, KESUIL SIE A, ZUUS/UN I I=2UUHUS/ 2.
show pie charts of the results of analysis. One hundred
percent of the pie chart is the reference yield, and the
performance ratio and the loss ratios are summarized in the

Fig. 8. Result, Site A, 2004/03/15-2004/04/25. Fig. 11. Result, Site B, 2004/08/10-2004/09/12.

15
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Daily analysis ot the above two examples was also BT AT ATME AVUMAG AN A SV MM Ay Sy e
performed to investigate output restrictions in more detail.
The results are shown in Figs. 12 and 13. The output
restriction in Fig. 12 occurred on only a few specific days,
and the rest of the days have few losses. In particular, on

exactly matched because of the speed of the output restric- Fig. 14.  Daily result, Site A, 2004/03/28.
tion and reactive power control, but the change of the
irradiance shows a clear-day pattern and no fast fluctuations
were to be expected on this day. The significant loss can be

Fig. 12. Daily result, Site A, 2004/03/15-2004/04/25. Fig. 15. Daily result, Site B, 2004/08/20.

16
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2004/03/15-2004/04/22.

LU VULPUL YULLAEL, JILC 1,

assumed to be the loss due to output restriction case 1. Daily
PCS output terminal voltages are also shown in Fig. 16.
Higher voltages are observed on the days which have
significant energy loss due to output restriction case 1 (see
March 28, April 10, 11, and 18 in Figs. 12 and 16). From
these results, it can be concluded that the method presented
in this paper can accurately detect and quantify losses due
to output restriction case 1, which prevents overvoltage on
the power grid.

Since the PCS output terminal voltage on August 20
at PV site B (Fig. 15) did notexceed 107 V, these restrictions
are assigned to case 2. Restriction started at about 10 am in
Fig. 15 and continued until 2 pm, the time at which a
shadow passed over the system. The fluctuation of the
irradiance was not so fast during restriction. This kind of
restriction appears to be associated with over-temperature
protection, which is discussed in Section 3.5 (3). The

rg. 1/, UloDdl S01dr 1ITad1dIce dand dainpierit

temperature between 2004/08/10 and 2004/08/26.

17
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over-temperature protection is successfully quantified in
this method.

5. Conclusions

A quantitative method for analysis of the output
energy loss of PV systems due to restriction to prevent
overvoltage on the power grid is developed in this paper.
The new method uses 1-minute averages of 1-second meas-
ured data instead of hourly data. The operation points on
the I-V curves are successfully estimated in order to detect
output restriction. It is confirmed that output restriction is
strongly dependent on the PCS output terminal voltage, and
the behavior of the output restriction function in the com-
mercial power distribution system is also clarified. Another
output restriction due to over-temperature protection of the
PCS is also quantitatively analyzed. Using this new method,
detailed system performance analysis of clustered PV sys-
tems becomes possible and the results of analysis can be
applied to battery-integrated PV systems which will be
installed in the near future.
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AUTONOMY-ENHANCED PV CLUSTER CONCEFPT FOR SOLAR CITIES
TO MEET THE JAPANESE PV2030 ROADMAP
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ABSTRACT: Tapan set up the long-term R&D roadmap called “PV2030” in June 2004, In this
article, a base-case scenario is showing that the mass deployment of 100GW PV aggregation will
supply 10 % of national electricity up to year 2030. Around a half of this PV installation is
assumed to be fulfilled by residential roof top applications. In such a state, PV penetration will
reach 100 % or more in the majority of urban areas and might become unable to be harmonised
with the conventional power grids beside these regions by ordinary grid-connected system
approach allowing frequent and apparent reversal power flow from PVs. The authors propose
new concepts to realise a less dependent PV aggregation on the existing power grids consisting
of a large number of PV systems including power electronics and energy storages, which is to be
called “autonomy-enhanced PV clusters” (AE-PVC). The authors composed a project proposal of
feasibility study concerning the concepts of AE-PVC for 1 and a half vear time frame and it was
adopted by the New Energy and Industrial Technology Development Organisation (NEDO) at
the end of August 2004. The aims of this preliminary research are to make R&D direction clear
and a process for achieving the targets stated in “PV2030”. Early results have already been
obtained including conceptual definitions of autonomy-enhanced, community-base clustered PV
systems and network simulation for some cases.

Keywords: Grid-connected, Interfaces, Inverter, PV system, Storage.

1 INTRODUCTION

Japan set up the long-term R&D roadmap titled “PV2030” in June 2004 as shown in Figures
1 and 2. In this article, a base-case scenario 1s showing that the mass deployment of 100GW PV
aggregation will supply 10 % of national electricity up to year 2030. About a half of this PV
installation is assumed to be brought from residential roof top applications. In such a state, PV
penetration will reach almost 100 % in the majority of urban areas and might become unable to
be harmonised with the conventional power grid beside these regions by ordinary grid-connected
system approach allowing frequent and apparent reversal power flow from PVs. The authors
have proposed new concepts to realise a less dependent PV aggregation on the existing power
grids consisting of a large number of PV systems including power electronics and energy
storages, which is to be called “Autonomy-Enhanced PV Clusters” or AE-PVC. [1], [2]

The authors composed a project proposal of feasibility study concerning the concepts of AHE-
PVC for one and a half year time frame and it was adopted by the New Energy and Industrial
Technelogy Development Organisation (NEDO) at the end of August 2004, as one of five
different categories covering thin-film silicon sclar cells, crystalline silicon solar cells,
compound types of solar cells, dye-sensitized solar cells, and PV power generation system
technology. The aims of these preliminary researches are to make clear R&D direction and a
process for achieving the targets stated in “PV20307,
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Figure 1: Japanese “PV2030 Roadmap” scenario
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Figure 2: PV roadmap and potential study by the Japanese PV2030

New system technology for the mass deployment of PV systems is being studied in this
project. The major concept of this study is to enhance PV system “autonomy”, which means a
community-base PV clusters less-dependent on external utilities. Feasibility studies are being
made on total system concept by simulation and some other key components such as battery
station, power electronics for active network control and individual inverters, etc..

2. NECESSITY OF AUTONOMY-ENHANCED PV CLUSTERS:

In Case 2 in Figure 2, as the base case for the PV2030, around 40% out of 100 GW PV
installation is assumed to be brought from single-family roof-top residential PVs. Therefore, this
means almost 100 % PV penetration may be necessary in the majority of urban communities. It
is supposed that these kinds of state may produce technical problems to formulate community

network as described in Table 1.

In addition, the authors believe that the higher degree of the autonomy of the community network, which
means less-dependent PV clusters, will give the higher bargaining power to a utility operating the network
against external utility company.

TUAT Kurokawa Laboratory
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Table 1: Possible grid concerns arising from highly-aggregated PV systems

and distributed generators

Ttems Description Remarks
Voltage Unexpected voltage the more
Problem distribution caused by notable for the

reversal power flow from larger clusters.
PVs
Harmonic Multiple Effect of
Distortion Harmonic Distortion from
power conditioners
EMI Multiple Effect of EMI
from power conditioners
Grid Protection - Short circuit capacity negligible for
PVs.

increase fed by DGs

- Short circuit fault
detection failure by DG’
UV relay

- Islanding chance
increased by multiple
Iinteraction

- Ground fault clearance
difficulty by islanding
chance increase

Community-base PV Cluster Concept e
by introducing Active Power Network Control

-

s
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Figure 3: A basic network image of “Autonomy-Enhanced PV Clusters”
by utilising power electronic devices and battery storage stations

Figure 3 illustrates a basic image of “Autonomy-Enhanced PV Clusters by utilising power
electronic devices and battery storage stations. The former power electronic facilities will bring
network control functions to improve grid parameters along the community internal grids by
utilizing shunt/serial active components, meshed network, loop power controller (LPC) and so on.
The existence of storage devices mainly gives higher degree of autonomy by the following

control functions:

- Reversal power flow suppression,
- Demand/supply gap compensation with forecasting functions,
- Suppression of fluctuating power flow from PVs and loads exceeding the governor speed

level of outer grids.

By formulating a kind of R&D consortium as show in Figure 4, the authors proposed a new
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project to NEDO in summer, 2004, This is originally planned as a preliminary stage, with the
time frame of 1.5 years, for going to the next stage of more extended R&D as shown in Figure 5.

The main objective of this feasibility study stage is planned for one and a half year time
frame: i.e.,

- Hlustrate possible scenarios and technological options toward 2030,
- Study new concepts of total network,
- Develop technological seeds newly required.

To realise this new technological challenge, a research group headed by Prof. K. Kurokawa
has been formed under the supervision of the Photovoltaic Power Generation Technology
Research Association — PVTEC, consisting of researchers from universities, national laboratory
and industries: 1.e., TUAT, Waseda Univ., Univ. of Fukui, AIST, GS Yuasa Corp., Nippon Oil
Corp. and other institutional cooperation. The authors have already started basic investigations:
1.e., conceptual definition of “autonomy-enhanced PV clusters”; extraction of possible technical
options, selected case studies for network formations by simulation, key component
developments such as SiC devices/conditioners, EDLCs (electric double layer capacitors),
battery storage station, power electronic ICs.

The present study has been initiated in October 2004 as the Phase 1 after the Japanese
PV2030 roadmap was published and will be continued until March 2006. The authors are
itending that the Phase 11 of this project will be also proposed to NEDO to be started in FY2006
hopefully for the next 5 year R&D term as shown in Figure 5.

™

/ s
/7 st (;e““"\\;v
— 2 ()
ds nerd
Xw""‘“ wajor B
Project Leader: \
K. Kurokawa “— 13eeds1 Power Elec. (TUAT) |

ds 2: SIC D AIST

Total System Study Seeds 2: SIC e"',"es( ST) |
Group \Seeds 3: Batt. Stn (GS-Yuasa) \

(PVTEC: WGs)  [geeds 4: EDLC (Nippon Oil) |

‘Simul.(AIST, Waseda-U, Fukui-U) ‘
S

Figure 4: Study group for AE-PVC feasibilty
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discuss Networks & .
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Feasibilty" /INRVSEY) DeploymentVZ

] .V

Figure 5: Present project status and possible future plan

3. DEFINITION OF AUTONOMY-ENHANCED PV CLUSTERS:

To achieve highly aggregated residential PV community expected by PV2030, AE-PVC is to
be defined as described in Tables 2 and 3. Such PV aggregation can supply sufficient annual
energy at the same range of or more than total, regional energy demand. A large number of PV
systems are distributed and melted into community grids among scattered residential loads.

TUAT Kurokawa Laboratory
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There are various strategies to accommodate a large number of (residential) PV systems into
urban power networks: e.g.,

Table 2: Basic Definition of Autonomy-Enhanced PV Clusters

Ttems

Descriptions

Basic
Recognition

Highly
aggregated

Power
direction

Less-
dependent

Optimisation

Residential application is still one of major sectors
according to PV2030.

Highly a%gregated residential community where
the annual energy production is at the same range
of or more than total, regional energy demand.

Downward and upward power flow along the
community network.

A self-controlled unit from the view point of
external grids: no reversal power flow cutward; no
disturbance by internal faults; autonomous
power/ener%y management as far as possible
mcludmg planned purchase from external utility or

Total optimisation on blank sheet in prospect of
future technology advances free from present
regulations.

Table 3: Detailed technological mission/definition
for Autonomy-Enhanced PV Cluster concept

Studied Cases - Major cases to meet “PV2030” roadmap scenario.
- Residential community-based PV integration.
- Technology optimised for 100% PV penetration or
more.
Object Loads - All the residential loads aggregated in a commumnity

network.

Reversal Power Flow
Occurrence

- Designed for no reversal power flow outward to

external utility grids

- Community grid connected with inter-grid router in

principle.

- Battery storage stations provided for intemal power

and energy management.

Islanding Prevention

- Inter-grid router isolates community grids during

external utility grid outage.

- Continuing service without internal interruption.
- No interference flown outwards during internal

faults.

Battery Storage

- Reversal power flow suppression.

- Gap compensation between demand & supply.

- Forecasting functions of solar input & demands.

- Suppression of power flow fluctuation homeward

faster than governor control among outer grids.

Active Network - Power electronics such as shunt/serial active
Control components, meshed network, loop power
controller (LPC).

- Storage devices.
- Low voltage grid formation as a unit bunch.

Interactions to and
from external utility
grids

*On occasion of external utility

- Community grids

interruption,
community network can continue its service after
immediate isolation by an inter-utility router.
rovide means for establishing
its own voltage and frequency.

- Consider an appropriate number of PV systems individually connected to utility grids with
reversal power flow following an allowable distribution voltage window,
- Divide power flow directions as one from a utility substation to individual residential loads
and another from distributed PV systems to the substation respectively,
- Separate a community network entirely from the existing utility grids by providing a certain
power electronics and storages for compensating voltage distribution and other grid

parameters.

At least in Japan, most of presently existing projects in network issues with distributed
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generators are considering the first 2 categories. The authors are now dealing with the third
category on a long-term basis seeking for future technical capability apart from present
regulatory restrictions.

4. AN EXAMPLE OF EARLY RESULTS

As shown in Figure 4, 5 research groups have started their sub-items respectively and been
obtaining initial results. PVTEC has also been organising the study group meeting 3 times every
month averagely to integrate these results for formulating total concepts. By using these initial
results “First Workshop of the Feasibility Study Project on Autonomy-Enhanced PV Clusters
was held in Tokyo, May 2005, [3]

Figure 5 shows a typical example among these initial results. In this case study, maximum
possible size of low-voltage distribution has been studied. Japanese standard low voltage is
specified 100 volt with the voltage window of 101+6 V. It is assumed that 5 kW PV systems is
installed for each houses, which has its internal load of 3 kW. A number of PV houses are
distributed along 200 V, 3 wire distribution lines as illustrated in the figure. [4]

disclosed)
| Each PV: 5 kw | HY: 6.6KY — BB CB/SW (closed)

F 3

| Total PVs = 1026 (=171 PVx6) |F o tiery External Utility
statian O0: CB/sw (

— —y
(3”5‘\?2) 9PV 19bunches = 171 Py 400m
Normal Operation: Altemate Tree Fault on Bus: diversion to another Bus
(Line Loss minimum) Fault in Bunch: Remove the Bunch
Figure 6:

One of typical example of alternate-Tree concept for AE-PVC community grids
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Total: 63 h HY Grid (6kV 1000mm?2 Wire;
MRS rid (6kv) J 0.00149 [Q2/40m]

240 m

W closed O: disclosed
Figure 5: Simulation for low-voltage distribution - most reliable Case

By applying average hourly irradiation data and residential load profile, the direction and
amount of power flows are calculated according to different line allocation patterns. The case
indicated above is corresponding to most reliable cases, i.e., voltage distribution kept inside the
voltage window at any time of irradiation and load profiles under normal operation conditions,
distributed line switch utilised for minimising power interruption under line fault condition at a
certain point along any lines. Line resistances are assumed as indicated in the figure. Allowable
number of PV houses is calculated 63 houses with one low-voltage line.

Maximum line losses for this case are estimated as 4.1 kW corresponding to 1.3 % of total
line capacity. The number of interrupted house 1s suppressed to 5 houses with total loss-of-load
of 15 kW.

This low-voltage distribution line is utilised as a unit cluster to integrate a residential
community network as illustrated in Figure 6. This is a typical example of our present conceptual
studies.

In this figure, a main battery station is provided at the point of utility interconnecting utility,
which may be an actively controlled power electronic router. A number of distributed, smaller
battery sub-stations may be necessary for improving utilisation factor of distribution line. Small
battery or capacitor for each PV power conditioner might also be useful to raise the value of PV
system by suppressing flicker arising from residential loads.

4. CONCLUSIONS

The authors have initiated their research works for a new type of system technology for the
mass deployment of PV systems is being studied toward PV2030. Early results of them have
already been obtained including conceptual definitions of autonomy-enhanced, community-base
clustered PV systems and network simulation for some cases. This work is being supported by
NEDO under the Ministry of Economy, Trade and Industry.
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A CONCEPTUAL STUDY ON SOLAR PV CITIES FOR 21ST CENTURY
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Tokyo University of Agriculture and Technology - TUAT
Naka-cho, Koganei, Tokyo, 184-8588 Japan

ABSTRACT

According to Japan's R&D roadmap “PV2030", a base-
case scenario is showing that the mass deployment of
100GW PV aggregation will supply 10 % of national
electricity up to 2030. About a half of this PV installation is
assumed to be brought still from residential roof-top
applications. In such a state, PV penetration will reach
almost 100 % in the majority of urban areas. Since the
classical grid formation approach does not seems to he a
good solution to deal with this issue, the author has
already proposed “Autonomy-Enhanced PV Clusters (AE-
PVC)” to realize a less dependent PV aggregation on the
existing power grids in conjunction with grid power
electronics and battery stations. Main contents are: (i)
Case studies for residential towns and cities, (i) Town
grids mainly composed of massive residential PVs by
considering fluctuating supply and demand; bidirectional
power flows, daily cycle and irregular components;
autonomous and distributed control of town grid; necessity
of battery stations or controllable power sources; own
frequency and voltage, (iii) Inter-grid coordination by
autonomous and distributed principle: interconnection
through national grids with power producers; inter-town
interconnections; asynchronous power routers and so on

INTRODUCTION

Japan set up the long-term R&D roadmap titled “PV2030"
in June 2004 [1]. A base-case scenario is showing that the
mass deployment of 100GW PV aggregation will supply
10 % of national electricity up to year 2030. As shown in
Table 1, about a half of this PV installation is assumed to
be brought from residential roof top applications. In such a
state, PV penetration will reach almost 100 % in the
majority of urban areas and might become unable to be
harmonized with the conventional power grid beside these
regions by ordinary grid-connected system approach
allowing frequent and apparent reversal power flow from
PVs. The authors have proposed new concepts to realize
a less dependent PV aggregation on the existing power
grids consisting of a large number of PV systems including
power electronics and energy storages, which is to be
called “Autonomy-Enhanced PV Clusters® or AE-PVC. [1],
(2]

A project of feasibility study was proposed concerning the
concepts of AE-PVC for one and a half year time frame to
by the New Energy and Industrial Technology
Development Organization (NEDO) in August 2004, as

1-4244-0016-3/06/$20.00 ©2006 IEEE
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one of five different categories covering thin-film silicon
solar cells, crystalline silicon solar cells, compound types
of solar cells, dye-sensitized solar cells, and PV power
generation system technology.

Table 1. Fractions of single family houses

o Potential Pv2030
Positions P) ) PIC2
Single Family 1.3% 446 % 45.0 %
Multi Family 1.3 % 16.2 % 15.6 %
Public 0.2% 102 % 743 %
Industry 3.6% 100 % 35%
Road/Rail 0.7 % 14.5 % 26.9 %
Business 0.4 % 45% 14.4 %
Unused Space 92.5 % 0.0 % 0.0 %
Total 7,985GW | 102 GW 1.3 %

MNew system technology for the mass deployment of PV
systems is being studied in this project. The major concept
of this study is to enhance “"PV system autonomy”, which
means a community-base PV clusters less-dependent on
external utilities. Such concepts can be realized by
advanced distribution grids including some key
components such as battery station, power electronics for
active network control and individual inverters, etc..

CASE STUDIES FOR RESIDENTIAL COMMUNITY

In Case 2 in Fig. 1 and Table 1, as the base case for the
PV2030, around 44.6% out of 102 GW PV installation is
assumed to be brought from single-family roof-top
residential PVs. It also corresponds to 45% the existing
single-family houses over the nation.

Table 2 summarizes a statistics of residential areas per 1
km?® block size. There are 11,654 blocks accommodating
more than 1000 households over Japan. It is found that
blocks mainly composed of single family houses
corresponds to 8,3535. If these houses are all covered by
5 kW roof-top PV, it makes 42.7 GW in total.

Table 2. A case study of single-family house aggregation
Number of households
exceeding 1000

Extracted blocks =

Residential neighborhood blocks 11,654
corresponding to 1 kmn?

Roof-top PV installable blocks 8,535
Potential: 5 kW-PV x 1000 427 GW

houses x 8,536 blocks

2283



Fig. 1 An example of residential neighborhood unit —
Seibu-Kitanodai, Hachioji, Tokyo

Figure 1 shows a typical case for representing residential
neighborhood wunit consisting of single-family houses,
which is Seibu-Kitanodai located in the western suburb of
Tokyo. Table 3 gives a case study to clarify a fundamental
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power to a utility operating the network against external
utility company.

Fig. 2 illustrates a basic image of “Autonomy-Enhanced
PV Clusters by utilizing power electronic devices and
battery storage stations. The former power electronic
facilities will bring network control functions to improve grid
parameters along the community internal grids by utilizing

Community-base PV Cluster Concept T
by introducing Active Power Network Control T
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Fig. 2.

Enhanced PV Clusters” by utilising power electronic “~-._

devices and battery storage stations
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shunt/serial active components, meshed network, loop
power controller {LPC) and so on. The existence of
storage devices mainly gives higher degree of autonomy
by the following control functions:
- 100 % reversal power flow from
permitted inside the community .
- Fluctuating reversal power flow suppression from the
community to external grids,
- Orderly demand/supply gap
forecasting functions,

individual PVs

compensation  with

For the first issues above, Fig. 3 gives a concept how to
control voltage distribution on distribution grids inside the
community. Power electronics adjusts the voltage to be
fixed to middle value of allowable voltage window.

Narrow

i Set t limit
> %

‘( -

Substation

Passive
Inter-
connection

SVR Allowable
Volt. Window

‘ External &Grids

—

a) Present approach according to existing regulations

Anchor to centre Alkﬂl\qi:iﬁce
2| Orderly
=| Flow \ ) —
5 ﬂ =1 ) W‘ic#:
o LT LT
£ Cc:)FT;'olled AVR AVR  Allowable
s — nter- :
= = | |connection| pm sy mem g o ....yo.l.t.'.w.l.r.'.do.g,,

Battery
Station

{b) Advanced approach which accept 100 %
reversal power flow from PVs
Fig. 3. 2 types of concept of voltage distribution along the
grids

The author proposed a new project to NEDO in summer,
2004. This is originally planned as a preliminary stage,
with the time frame of 1.5 years, for going to the next
stage of more extended R&D.

To realize this new technological challenge, a research
group headed by the author has been formed under the
supervision of the Photovoltaic Power Generation
Technology Research Association — PVTEC, consisting of
researchers from universities, national laboratory and
industries: i.e., TUAT, Waseda Univ., Univ. of Fukui, AIST,
GS Yuasa Corp., Nippon Qil Corp. and other institutional
cooperation[4], [5]. They have already completed this
feasibility study stage: ie., conceptual definition of
“autonomy-enhanced PV clusters”; extraction of possible
technical options, selected case studies for network
formations by simulation; key component developments
such as SiC devices/conditioners, EDLCs (electric double
layer capacitors), battery storage station, power electronic
ICs. The research group is intending that the Phase Il of
this project will be also proposed to NEDO to be started in
FY 2006 hopefully for the next 4 year R&D term.

Table 4. Basic Definition of Autonomy-Enhanced PV
Clusters

Items Descriptions
Basic Residential application is still one of
Recognition  major sectors according to PV2030.
Highly Highly aggregated residential
aggregated  community where the annual energy
production is at the same range of or
more than total, regional energy
demand.
Power Downward and upward power flow
direction along the community network.
Less- A self-controlled unit from the view
dependent point of external grids: no reversal
power flow outward; no disturbance by
Internal faults; autonomous
power/fenergy management as far as
ossible including planned purchase
rom external utility or IP.
Optimization Total optimization on blank sheet in
Pros ect of future technology advances
ree from present regulations.
Table 5. Detailed technological mission/definition for
Autonomy-Enhanced PV Cluster concept
Studied -Major cases 1o meet "PV2030"
Cases roadmap scenario.
-Residential  community-based PV
integration.
- Technology optimized for 100% PV
penetration or more.
Object - All the residential Toads aggregated in
Loads a community network.
Reversal -Designed Tor no reversal power flow
Power Flow outward to external utility grids
Occurrence - Community grid connected with inter-
%rid router in principle.
attery storage stations provided for
internal power an energy
management.
[slandin -Inter-grnid  router isolates community

Prevention %rids during external utiIitK grid outage.
ontinuing service without internal
interruption.
- No interference flown outwards during
internal faults.

Battery - Reversal power flow suppression.
Storage - Gap compensation between demand
& supply.

- Forecasting functions of solar input &
demands.

- Suppression of power flow fluctuation
homeward faster than governor
control among outer grids.

Active - Power electronics such as shunt/serial
Network active components, meshed network,
Control loop power controller (LPC).

- Storage devices.

-Low voltage grid formation as a unit
bunch.

Interactions = - On occasion of external utility
to and from interruption, community network can
external continue its service after immediate
utility grids isolation by an inter-utility router.

- Community grids provide means for
establishing its own voltage and
frequency.
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\ Total PVs = 1026 %171 PVX6) ‘ Router B“:t?si?r:y External Utlity
Station |:||:|: CB / SW (disclosed)

HV: 6.6kV - M : CB/SW (closed)
F Y @
200V
720m
v
(3”;‘3;‘, 9PV 19 bunches = 171 Py 400m
Normal Operation: Alternate Tree Fault on Bus: diversion to another Bus
(Line Loss minimum) Fault in Bunch: Remove the Bunch
Fig. 4. One of typical example of alternate-Tree concept
for AE-PVC community grids
DEFINITION OF STUDIED EXAMPLS ON LOW VOLTAGE GRIDS
AUTONOMY-ENHANCED PV CLUSTERS
To achieve highly aggregated residential PY community While 5 research sub-groups studied their sub-items
expected by PV2030, AE-PVC is to be defined as respectively, PVTEC organized the study group meeting 3
described in Tables 34and 5. Such PV aggregation can times every month averagely to integrate these results for
supply sufficient annual energy at the same range of or formulating total concepts. By using these initial results
more than total, regional energy demand. A large number “First Workshop of the Feasibility Study Project on
of PV systems are distributed and melted into community Autonomy-Enhanced PV Clusters was held in Tokyo, May
grids among scattered residential loads. 2005. [3]
There are various strategies to accommodate a large Fig. 4 shows a typical example of proposed low voltage
number of (residential) PV systems into urban power distribution grids. In this case study, maximum possible
networks: e.g., size of low-voltage distribution has been studied.
Japanese standard low voltage is specified 100 volt with
- Consider an appropriate number of PV systems the voltage window of 101+6 V. It is assumed that 5 kW
individually connected to utility grids with reversal PV systems is installed for each houses, which has its
power flow following an allowable distribution voltage internal load of 3 kW. A number of PV houses are
window, distributed along 200 V, 3 wire distribution lines as
- Divide power flow directions as one from a utility illustrated in the figure. [5],[6]
substation to individual residential loads and anocther
from distributed PV systems to the substation By applying average hourly irradiation data and residential
respectively, load profile, the direction and amount of power flows are
- Separate a community network entirely from the calculated according to different line allocation patterns.
existing utility grids by providing a certain power The case indicated above is corresponding to most
electronics and storages for compensating voltage reliable cases, ie., voltage distribution kept inside the
distribution and other grid parameters. voltage window at any time of irradiation and load profiles
under normal operation conditions, distributed line switch
At least in Japan, most of presently existing projects in utilized for minimizing power interruption under line fault
network issues with distributed generators are considering condition at a certain point along any lines. Line
the first 2 categories. The authors are now dealing with the resistances are assumed as indicated in the figure.
third category on a long-term basis seeking for future Allowable number of PV houses is calculated 63 houses
technical capabilty apart from present regulatory with one low-voltage line.
restrictions.
Maximum line losses for this case are estimated as 4.1
2286
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kW corresponding to 1.3 % of total line capacity. The
number of interrupted house is suppressed to 5 houses
with total loss-of-load of 15 kW.

This low-voltage distribution line is utilized as a unit cluster
to integrate a residential community network as illustrated
in Fig. 5. This is a typical example of our present
conceptual studies.

In this figure, a main battery station is provided at the point
of utility interconnecting utility, which may be an actively
controlled power electronic router. A number of distributed,
smaller battery sub-stations may be necessary for
improving utilization factor of distribution line. Small
hattery or capacitor for each PV power conditioner might
also be useful to raise the wvalue of PV system by
suppressing flicker arising from residential loads.

RESULTS ON BATTERY STATION

Figure 5 shows a configuration of the battery storage
station, which consists of bi-directional converter and
secondary batteries. The batteries charge the surplus Pvs
the generated power and provide it to the loads during
less generation period or nighttime. Bi-directional
converter controls charge/discharge of the batteries to
suppress reversal power flow and keep receiving power
from utility line as small as possible. Moreover, the
converter detects AE-PVC distribution lines current,
compensating harmonic current and reactive power from
loads. [7]
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Fig. 5. Configuration of battery storage station

Figure 7 shows the data for day of maximum generation
obtained with 5k\W PV system in Tokyo, calculated from
METPV[8]. Similarly, Fig. 7 shows the residential demand
power data of west Japan area calculated by Jyukankyo
Research Institute Inc. From these data, the capacity of
converter and battery of the battery storage station can be
obtained.

As shown in Fig. 7 and Table 6, residential energy
consumption is typically given for fully-electrified home for
these evaluations. According to pre-study .for identifying
necessary PV system output, PV system capacity is
specified 7 kW for this home.

Figure 8 shows an annual battery operation profile
according to various storage capacities. The calculation of
surplus power during daytime and demand power during

nighttime from the generated energy and demand. The
battery storage station is required to charge surplus power
during daytime and supply demand power during nighttime.
The capacity of these powers significantly varies
depending on month. For example, while a large capacity
of surplus power is generated due to plenty of solar
radiation in May, the demand increases due to low
temperature in February. Thus, it is necessary to store
approximately 21 kWh of the surplus power per day in
May (21 MWh for 1000 PVs). A typical annual prcfile of
battery operation is given in Fig. 9.
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Fig. 6. Hourly generated PV energy for standard
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Fig. 7. Monthly-averaged, hourly domestic energy

consumption by a fully electrified home in western Japan
area

Table 6. Annual domestic energy consumption by a fully
electrified home

MJ/Home/ | kWh/Hom | Fraction
Year efYear for kWh
Space Heating 2955 821 13 %
Space Cooling 488 135 2%
Hot Water 4,224 1,173 18 %
Cooking 1,914 532 8 %
Light/Appliances 1,3964 3,879 59 %
Total 2,3545 6,540 100 %

Notes: Thermal energy supplied by electrically driven heat
pumps; Cooking by electromagnetic cooker.
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INTER-GRID
COORDINATION

AND INTER-COMMUNITY

Figure 10 shows an image of autonomously
interconnected community PV aggregation in order to form
a regional electrical network. Town grids are mainly
composed of massive residential PVs by considering
fluctuating supply and demand; bidirectional power flows;
daily cycle and irregular components; autonomous and
distributed control of town grid; necessity of battery
stations or controllable power sources; own frequency and
voltage.

External PP

Controllable
Power Flow

Transmission
Infrastructur e ontrollable

Power Flow

ntrollable
wer Flow

Crle
Power Flow

Fig. 10 A future image of “Energy Internet”

In this case, any centralized control units are not preferred
to realize real distributed system like internet in the field of
telecommunication network. Key technical requirements
for this concept of “energy Internet” may be illustrated as
follows:

- A synchronous router for inter-community and inter-
utility interconnection to allow operating under different
frequency.

- Distributed control controls  the

strategy, which
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frequency, P/Q flow and voltage of own terminal
according to operational information at own terminals
only.

- Pre-specified orderly inter-flow given by battery station
control and forecasted PY/ total output.

- Routers and battery station varies system frequency
according to their burden share of output power.

- From the existing external power network, the whole
community grids to be treated as one system
controlled in orderly manner.

CONCLUSIONS

The author has initiated their research works for a new
type of system technology for the mass deployment of PV
systems is being studied toward P\/2030. Some results of
them are presented including conceptual definitions of
autonomy-enhanced, community—base clustered PV
systems and network simulation for some cases and so
on. This work is being supported by NEDO under the
Ministry of Economy, Trade and Industry.
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A SENSITIVITY ANALYSIS OF VERY LARGE-SCALE
PHOTOVOLTAIC POWER GENERATION (VLS-PV) SYSTEMS IN DESERTS

Masakazu Itoﬂ, Kazuhiko Katoz, Keiichi Komotog, Tetsuo Kichimi4, Kosuke Kurokawa®

1Tokyo Institute of Technology
*National Institute of Advanced Industrial Science and Technology (AIST)
*Mizuho Information & Research Institute (MHIR)
*Resources Total System (RTS)
*Tokyo University of Agriculture and Technology (TUAT)

ABSTRACT

A preliminary study on potential of Very Large Scale
Photovoltaic Power Generation Systems (VLS-PV) in de-
serts from economical and environmental view points has
been studied. However. the data in the studies depend on

P i iAo i RIS T w m o w L e e

transmission lines. The VLS-PV systems have been
evaluated payability, environmental impacts, transmission
losses and so on. In addition, author have been showed
the possibility to contribute to energy resource saving and
mitigation of environmental problems, and propose practi-
cal systems to accelerate utilization of very large scale
photovoltaic systems.

In order to evaluate VLS-PV systems, Life-Cycle
Analysis (LCA) has been employed. It is a major tool to
evaluate environmental impacts of products. As a result,
energy payback time has been obtained as 2-3 years, and
the CO: emission rate has been obtained as 11-20 g-
C/kWh. Generation cost has been approximately 11 US-
cent/kWh using 2 USD/W PV modules, and 7 UScent/kWh
using 1 USD/W PV modules.

However, the data in the studies depend on site,
country, price and so on. Therefore, a sensitivity analysis
of the studies should be obtained. In this paper, authors
studied 5 sensitivity analyses, which are PV module effi-
ciency, PV module degradation, interest ratio, depreciation
period. labor cost and cable.

method. It is same evaluation way as our studies before
[2). Assumptions of the base case are; PV module is 15.8
efficiency multi-crystalline silicon, interest ratio is 3 percent
and depreciation time is 30 years.

1) A sensitivity analysis for PV module efficiency

To evaluate sensitivity of PV module efficiency for
VLS-PV systems, we set six case studies. They are about
(1) generation cost as shown in the Fig. 2 , (2) energy
pay-back time and CO: emissions rate in Fig. 3, (3)
amount of steel and foundation for PV system arrays in
Fig. 4, {4) number of labors in Fig. &, (5) annual cost in Fig.
6, (6) energy requirement and CO, emissions in Fig. 7.
For each case study, five module efficiencies which are 6,
10, 15.8, 20 and 30 percent were set and evaluated.

1-4244-0016-3/06/520.00 £€2006 IEEE 2387
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é 15 \\\Niase sase 150 "gv Module efficiency [%]
g 3
2 10 2.0 1015 0 100 * Fig. 7 Effect of module efficiency to Energy requirement
E 5 R 56.6 50 and CO; emissions
T 60 ¢
0 40 0 2) A sensitivity analysis for PV module degradation
0 10 20 30 40 ratio
Module efficiency [%] . .
0.5, 1.0 and 1.5 percent per year degradation ratios
Fig. 4 Effect of module efficiency to amount of steel and were set for the analysis. Increase of 0.5 % degradation
concrete ratio caused 7 to 8 percent increase of generation cost,
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Fig. 8 Effect of degradation ratio to cost, energy and CO2

3) A sensitivity analysis for interest ratio and depre-
ciation time

Interest ratio was set 1.0, 2.0, 3.0 and 6.0. Deprecia-
tion time was set 30 and 20 years. If interest ratio de-
crease from 3.0 to 1.0 percent, generation cost become
70 percent. 20 years depreciation time increased 20 to 30
percent of generation cost of 30 years case.

ragU 1o vury wmiui mutrrosT soanouy G o
fects construction cost strongly. However, in case of 4
USD/W PV module price, the effect was not very big. But
in case of 1 USD/W PV module price, highest country’s
generation cost was twice as lowest country.

TUAT Kurokawa Laboratory
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All cables are faced with compliance standards [3].
However, cable should be selected by consideration of
cable cost and electricity loss. In this analysis, three kinds
of cables for three DC sections were evaluated to investi-
gate suitable cables. Fig. 11 is a result of the cable cost.
In the left part of the figure, cable from module to first junc-
tion box was changed from 2 sq to 5.5 sq. In central part,
cable from first junction box to second junction box was
changed form 5.5 sq to 14 sq. In right part, cable from
second junction box to inverter was changed from 150 sq
to 250 sq. Cable cost of Ieft and right part of the Fig. 11

R RS S

Fig. 11 Effect of cable type to cable cost

2389



EfE%% Papers

20 19.22 1917 197 1924 19.22 19.21 19.22 1921 1920 CONCLUSION
13121509 1503 15M 1512 ASMLAE12 O 1SA1dSH In this paper, five case studies of sensitivity analysis
15 —8— 4 USD/W

3 USD/W of VL8-PV systems were evaluated from economical and
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Generation cost [UScent/kiWh]

10 —#—1USD/W module efficiency, (2) PV module degradation, (3) interest
696 695 695 696 6% 695 696 696 696 ratio and depreciation period, (4) labor cost and (5) cable.

; From case study (1), PV module efficiency affected
150sq | 150sq | 150sq | 150sq | 150sq | 150sq | 150sq | 200sq | 250sq generation cost little. This result might be affected by

8sq  8sq | 8sq | 55sq  8sq | 14sq | 8sq  8sq | Bsa module price which was set same price (USD/W) for all

2sq | 35sq | 58sq | 2sa | 2sa | 2sq | 2sq | 2sq | 2sq efficiency modules in this study. However, module effi-
Cable type ciency affected energy and CO, emissions strongly. The

reason was that change of module efficiency caused big

change of amount of array support and foundation which

require much energy and emit CO, emissions.
Degradation ratio in case study (2) affected economic

Fig. 12 Effect of cable type to generation cost
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E ' —#— 002 emission rate [g-C/kWh] T E case sfudy (3) and (4) affected generation cost strongly.
L174 "1 g Change of cable in case study (5) did not effect generation
g - 11_568]1:;—'ﬂ 1658 116 £ cost, energy requirement and CO» emissions even allow-
§ 0 1180116 OO0T1640 11 631 11640 11,643 11 T ing electricity loss. Because cable did not take big part of
“ 70 15 38 cost, energy requirement and CO» emissions.
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8sq 8sq | 8sq |55sq 8sq  1dsq 8sq B8sq  8sq dation, interest ratio, depreciation period and labor cost.
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VOLTAGE SAG/SWELL CONTROLLER BY MEANS OF D-UPFC IN THE DISTRIBU-
TION SYSTEM

Kyungsoo Lee, Hirotaka Koizumi, Kosuke Kurokawa
Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

ABSTRACT

A power quality issue, especially, voltage problem is
the vital concern in most distribution system today. So far,
the voltage problem is mainly from under-voltage (voltage
sag) condition due to a short circuit or fault. Recently, re-
newable energy such as photovoltaic (PVY) system affects
over-voltage (voltage swell) condition caused by its re-
verse power flow at daylight.

In this paper, proposed Distribution-Unified Power
Flow Controller (D-UPFC) for preventing both voltage sag
and swell conditions is discussed. The proposed scheme
consists of an AC chopper, a switch and a series trans-
former. The AC chopper generates compensation power
when voltage sag or swell condtion happens. The secon-
dary and tertiary parts of a series transformer connect with
switches for controlling voltage sag or swell. D-UPFC does
not need any energy storage devices such as large ca-
pacitors or inductors and it provides fast compensa-
tion.Simulation results show D-UPFC controls voltage
concerns in the distribution system.

TUAT Kurokawa Laboratory
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Among the most common are tap-changing trans-
formers, which are the types of voltage regulators used in
today’s distribution system. However, these methods have
significant shortcomings. For instance, the tap-changing
transformer requires a large number of thyristors, which
results in highly complex operation for fast response. Fur-
thermore, it has very poor transient voltage rejection, and
only has an average response time [1].

Recently, renewable energy such as photovoltaic
(PV) system is installed in many places. Although PV sys-
tem has many advantages for future view, a lot of PV sys-
tems which are installed in the residential areas together
can cause over-voltage (voltage swell) condition due to
their reverse power flows. Like tap changing transformer
from existing technology, SVR (Step Voltage Regulator)
which consists of autotransformer with line drop compen-
sator controls voltage swell as well as voltage sag. Even
though SVR controls distribution system’s voltage, SVR
can not install in every pole transformer place, because
we should consider the price of the product. Also, future
distribution system will be changed to increasing the in-
stallation of renewable enerav. especiallv PV svstem.
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AP=AVxI, M
Also, D-UPFC input current /s> due to voltage variation is,
AV
ISZ = (_')ISJ.? (2)
4

Using Kirchhoffs current law, pole trans. current /s is
given,

AV
IS:ISI_I_IS :(]'+_)ISI‘ (3)
L,IVS '
D-UPFC input voltage Vs is given,
. AV
Vs :'T/;—(ZJXIS):P;_ZJ(H?)ISJ *)
g
where, V; is pole tr. Voltage, V., is clustered PV sys-
tem voltage, Z; and Z; are line impedances (however, Z,
is very small because D-UPFC connects with pole trans.
voltage V; in the same pole)

Through eq. (1) to (4), the effective D-UPFC control
should agree with eq. (5).

AR 5)

where, AVSJ is the variation value of Vs'

D-UPFC SCHEME AND CONTROL

D-UPFC scheme
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voltage control state.

Table 1. D-UPFC switches operation during voltage con-

trol state
" means currenf flow s through reverse diode of the swifch

N

AC chopper Series trans.

Mode | Phase \——r o7 T & [ o4 [ oWl [ oW
+ ON OFF | OFF | "ON | OFF ON

Voltage OFF | "ON OMN OFF | OFF ON
LP “"ON | OFF | OFF | ON OFF ON

B OFF OM "ON | OFF | OFF ON

+ OMN OFF | OFF | "ON OMN OFF

Voltage OFF | "ON oM OFF | OM OFF
DOWY I “ON | OFF | OFF | ON ON OFF
B OFF 0N "ON | OFF | ON OFF

D-UPFC control

D-UPFC senses input voltage, line voltage and line
current. Input voltage is the reference voltage because it
connects with pole trans. voltage V. Line voltage and cur-
rent represent the D-UPFC output voltage and output cur-
rent, respectively. Figure 4 shows D-UPFC control in the
distribution system. Input voltage Vi, and line voltage with
line impedance Vine_sum for controlling PCC (here, PCC is
the next pole apart from the pole transformer) voltage and
line current /i, are sensed and change to Direct Current
(DC) values through Root-Mean-Square (RMS) function.
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Fig. 4. D-UPFC control In the distribution system.
SIMULATION MODEL AND PARAMETERS
Simulation model

Grid connected D-UPFC simulation model is consid-
ered a simple condtion. Figure 5 shows the D-UPFC
simulation model. This model is analyzed from substation
to load area. D-UPFC is installed at the back of pole trans-
former. Load and clustered PV system are simply fixed
after PCC. However, the actual load conditions quiet com-
plicate.

Sudmianar Poie Faseizooar
A VA
R

PV sysfam

e e
Phinbaduid A Freemi

S Lasg-n s
h )

Fig. 5. D-UPFC simulation model.

Simulation model parameters of D-UPFC are shown
in Table 2. Line impedance parameters refer to electric
company information of Japan. A series transformer turns

Viine _swm — Y poc T \Eine M &2 i
However, Eq. (B) can be only used when power flow is
from substation to load area. When reverse power flow
occurs eq. (8) changes to eq. (9).

'T/}me_ssm = Vpcc - (j}ine X 22) )

Simulation performs considering both voltage sag and
swell conditions. Table 1 shows the simulation result when
voltage sag happens. Voltage sag Vs, from O[V,rms] to
4[V.rms] was simulated in the distribution system. V), is
the D-UPFC input voltage, Vine is the D-UPFC output volt-
age, and Vg sum is the compensatated D-UPFC output
voltage to control V... D-UPFC controls V.. voltage to
98.6[V.rms] when Vs, is 3[V,ms]. V. voltage from
O[V.rms] to 2[V,ms] does not control V.. voltage because
of voltage margin, which shows eq. (7). However, V.. was
not controlled when V., was 4[V,rms].

Table 3. Votage sag result
* Al parameters indicate RMS value, - means unstable voltage.

Mo D-UPFC contral D-UPFC Contral

VS o T vine | Vet | Vine sum | Vie | Vine_sum | Vi
0 | 995 | 994 | 993 996 994 954 993
1 995 | 984 | 9803 | 986 984 984 983
2 | 995 | 9748 | 9797 | 976 575 575 574
3 | 995 | 9653 | 9642 | 965 988 | 938 986
4 995 | %56 | 954 956 - - -

In the voltage swell simulation, clustered PV system
regarded as the current source. Thus, /, means clustered
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Fig. 6. Voltage sag and swell simulation waveforms (The
left graph shows voltage sag 3[V.rms] from 0.08[s], the
right graph indicates voltage swell 300[A.rms] from
0.08[s)).

The left of Fig. 6 shows when voltage sag 3[V,ms]
occurs at 0.08[s]. The right of Fig. 6 shows when voltage
swell ., 300[Arms] happens at 0.08[s]. X axis shows
simulation time from 0[s] to 0.3[s]. Two simulation results
are already shown in Table 3 and 4, respectively. Fig. 6
shows the waveforms of voltage sag and vollage swell
simulation. The left-top waveform shows the V.., wave-
form, input voltage Vi, and pcc voltage V. are shown in
the below waveform. Next, the third and fourth waveforms
show AC chopper output voltage and current, respectively.
Finally, the bottom waveform indicates PWM signal of D-
UPFC is shown. Although V.., occurs at 0.08[s], the
steady-state condition of PCC voltage becomes steady-
state after 0.2[s].
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MODELING THE PERFORMANCE OF SEVERAL PHOTOVOLTAIC MODULES

Jun Tsutsui, Yusuke Sato, Kosuke Kurokawa
Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

ABSTRACT

The model equations to estimate the photovoltaic
module performance for outdoor were proposed by many
institutions. This work proposes the new model, which is
the high predictive accuracy on low irradiance, combines
the model proposed by National Renewable Energy Labo-
ratory (NREL) and the model proposed by Joint Research
Centre (JRC); meanwhile, we estimate the photovoltaic
module performance using the linear interpolation method,
which is being deliberated at the conference that Interna-
tional Electro technical Commission (IEC) sponsor. This
paper describes the new model, and a result of comparing
both models which adopted several photovoltaic medules;
a crystalline silicon module (c-Si), a polycrystalline silicon
module (poly-Si), and a cupper-indium-diselenide module
(CIS).

INTRODUCTION

The outdoor maximum power (Prna) of solar module
differs from the indoor Pna which is evaluated on Stan-
dard test condition (STC). For example, the junction tem-
perature of solar cell reaches almost 50 °C at ‘IkW/mQ,
moreover, are influenced by the ambient temperature. And
the solar spectrum changes during a day because of the
aerosol and water vapor, therefore it is rare to fit the air
mass 1.5 (AM1.5) means the standard spectrum. Conse-
quently, to estimate the module performance, our proposal
models need to take the module temperature, the solar
irradiance and the solar spectrum into account.

This work proposes the new model which combines
the model proposed by NREL and JRC[1][2] Using the
model of NREL, open-circuit voltage (V.), and short-
circuit current (ls) of module are estimated, plus using the
model of JRC, fill factor (FF) is estimated. Crossing the
calculated value (Vi |, and FF), arbitrary maximum
power is obtained. On the other hand, as another model,
we estimate the performance using the linear interpolation
method which is deliberated as the energy rating. [3][4]

MODEL OF V. and Isc

According to NREL, Voc and lsc are shown by equation
(1), (2). Ve, lsc on STC are expressed by subscript zero.

E
Ly :E—ISC(O)[IJrO',(TfTO )l 1)
0
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E
Voc = Voc(O) [1 + B(T B TO )(l + BIH[EOH (2)

Where:

E=irradiance [kWm’]; Eo= 1kWim®

T=PV module temperature C]; To = 25 °C

o=ls; correction factor for PV module temperature
B=V,. correction factor for PV module temperature
3=V correction for irradiance

MODEL OF FF

According to JRC, FF is shown by equation (3). The
feature of this model is to obtain coefficient a, b, ¢, d, and
e by the regression. Therefore, FF on STC is not needed
to decide arbitrary FF. In addition, the regression coeffi-
cients are able to decide from |-V curve data a day.

FF:a+bE+C
InE

+T(d+¢cE) 3)

Where:

E=irradiance [\NlmQ];

T=PV module temperature [K]
a,b,c,d,e=regression coefficient

The result of our verifying predictive accuracy, we
found the equation (3) model was not good to predict in
low irradiance area. The reason is that third section of
equation (3) expresses the temperature coefficient of FF is
linear to the irradiance. But, according to the outdoor re-
sult, the temperature coefficient becomes smaller while
the irradiance decreases. Fig.1 shows the irradiance de-
pendency of the temperature coefficient of FF. Therefore,
we proposed to add the new regression coefficient "f',
which works so that the temperature coefficient becomes
smaller. Equation (4) is our proposed equation.

FF:a+bE+c
InE

ST@4eE+ %) @

Fig.2 shows the comparison of modeled value by
Equation (3) and (4), and measured value of outdoor re-
sult. Depending on a new regression coefficient, modeled
value by equation (4) is coincided with the measured value
in low irradiance area, which is from 0.1kWim® to
0.3KW/m”
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the solar module and the pyranometer. And when the so-

lar altitude is low, incident angle loss occurs to the module.

Hence we estimated by using the I instead of the irradi-
ance this time, that is to say, equation (7) was replaced by
equation (8).

Isc - Isc
[ (Vi=In(V)+ = =L (IEZ (V)_ Ig (VD (8)

02 T tscl

DEFINITION OF THE ERROR

Before the estimated accuracy is indicated, we intro-
duce the expression that shows the error as follows.

En"or[% ] _ Calculated value — Measured value ©)
Each Parameter on STC

Equation (9) shows the error which is the absolute er-
ror divided by Pz on STC. In this paper, we defined this
as the error.

RESULT
= Confirmation of calculation accuracy of Vo, lsc =

According to the equation (1), (2), the temperature co-
efficient o, p and & expressed V,; correction for irradiance
as a function is necessary to calculate the arbitrary Vo, lsc.
In this study, these coefficients were calculated by outdoor
result. B and 3 were able to calculate by high decision co-
efficient (Rz), which was more than 0.98. (See Table 1) On
the other hand, o was not accurate because of slight incli-
nation. Therefore we valued o at 0.05%/°C on a temporary
basis.

Table 1 Results of B, 3

Mod. B R ) R

c-Si -0.29 0.98 5.27 1.00
poly-Si | -0.31 0.99 4.96 0.98
CIGs -0.29 0.99 6.30 0.99
UNIT %/°C - %

Next, using the result of B, 3, we calculated V., | from
equation (1), (2). Table 2 shows the calculation accuracy
of them. According to table 2, the calculation accuracy of
Voc is high, that is the calculated value corresponded with
the measured value. On the other hand, the calculation
accuracy of ls. is not better than V.., as the standard de-
viation is over 1.0%. In this case, we didn’t consider the
influence of the solar spectrum; so that it might enlarge the
error of calculated |5, and measured |.. which is influenced
by the outdoor solar spectrum.

Table 2 Confirmation of calculation accuracy

Error
|V|Od. Voc |SC
AVE. SD. AVE. SD.
c-Si -0.02% 0.35% 0.12% 1.07%
poly-Si -0.67% 0.28% -0.62% 1.21%
CIGS 0.11% 0.27% 0.50% 1.09%

= Confirmation of calculation accuracy of FF, Prax=

Table 3 shows the view of several regression coeffi-
cients from "a" to *f". These coefficients are calculated
from |-V curve data a day after removing the measurement
error, and adapted to the estimate of FF a year. The point
that should be noted in the calculation of the regression
coefficient is to include the sufficient data around the low
irradiance which is from 100 W/m® to 300 Wim“a day. It's
because an inclination of FF versus the solar irradiance
changes from minus to plus prominently. (See Fig.2) Ad-
ditionally, coefficient *f* definitely needs to become a mi-
nus figure.

Table 3 View of the regression coefficients

c-Si poly-Si CIGS
a 7.32E-01 6.84E-01 6.89E-01
b 1.62E-03 5.89E-03 2.64E-03
c 8.72E-01 8.51E-01 8.54E-01
d -3.98E-04 -4.53E-04 -5.44E-04
e -7.20E-07 -2.51E-06 -1.15E-06
f -2.06E-02 -1.74E-02 -2.60E-02

Using the regression coefficient, estimated FF of each
module is calculated. Table 4 shows the confirmation of
calculation accuracy of FF and Py,. The average error of
the estimated FF is possible to calculate within 1% as well
as the V.. Fig.5, 6 compares the measured and estimated
FF or Prayx on ¢-Si module.

Table 4 Confirmation of calculation accuracy

Error
Mod. FF Pmax
AVE. SD. AVE. SD.
c-Si 0.06% 0.46% 0.15% 1.08%
poly-Si 0.23% 1.64% -0.99% 1.54%
CIGS -0.17% 0.86% 0.37% 1.10%
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cSi

Comparing to table 4, table 5 indicates the average
and standard deviation of the error was slight at all mod-
ules. Therefore, the estimated Py, doesn’t depend on the
kind of module. We establish the linear interpolation
method is the superior estimated equation. However, in
this estimate, we ignore the speciral mismatch parameter
and the dependence of the solar angle of incidence, be-
cause the module’s |5 is used. Hence, as the next task,
the linear interpolation method is improved to include their
influences.

085

080

o
|
o

070

Caloulated FF [-]

CONCLUSION

We have compared two kinds of model equations for
the Pmay of a c-Si, poly-Si, and CIGS module respectively.
! ! ! . One model is to combine the conventional equations to

060 ; ; : : | calculate V., lsc and the new equation of FF improved

060 065 070 075 080 085 around the low irradiance, so that the standard deviation

Measured FF [-] of the error has become within about 1.5%. The other

model is the linear interpolation method, which accuracy is

Fig.5 Comparison of measured FF vs. calculated FF within about 0.5%. Hence, the linear interpolation method

is the accurate model that it is possible to adapt to the
various modules.

065

cSi
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= Confirmation of calculation accuracy =
of the linear interpolation method

Table 5 shows the result calculated by equation (6), (8).

Table 5 Confirmation of calculation accuracy

Mod. Error of Prnax
AVE. SD.
c-Si -0.11% 0.46%
poly-Si -0.09% 0.36%
CIGS -0.39% 0.41%

2261

March 24, 2007
195



%‘hh TUAT Photovoltaic Student Think-in
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ABSTRACT

It is becoming more important to evaluate the in-
stalled PV system's performance and loss factors to en-
hance the system’s efficiency and pull more electric power
from the systems. This paper describes the evaluation
method of PV systems and summarizes the results of an-
hual performance and loss analysis. Grid voltage and
show coverage are two major serious loss factors for PV
systems, optimized array configuration results more sys-
tem yield on roof mounted residential PV systems.

INTRODUCTION

In the case that many of grid-connected residential
photovoltaic (PY) systems are installed in the small area
and connected to the same power distribution network,
this situation called “Clustered”, voltage raise of power
distribution line due to the reverse power flow from the PV
systems would be the problem. To prevent the over-
voltage of the power distribution line, Japanese PV sys-
tem's power conditioning subsystems (PCS) is monitoring
its own output voltage, and if it is higher than the specifica-
tion of the voltage, PCS will automatically reduce its output
power. Because of this function, PV system’s output will
be restricted even though PV array is receiving enough
solar irradiance if the grid voltage is too high [1] To inves-
tigate the issues which may happen in the clustered PV
systems, “Demonstrative research on clustered PV sys-
tems” is being conducted from December, 2002 by NEDO.
Approximately 550 PV systems will be installed on the
roofs of houses and connected to the commercial power
grid in the demonstrative research area in Oota, Japan. [2]

ANALYSIS METHOD
Loss factors

Input energy of PV systems is irradiation. Pyranome-
ter is commonly used to measure the irradiation, however,
pyranometer cannot cover the whole area of the PV array
so shading on the PV array may occur in some systems.
Incident angle dependence, spectral sensitivity and other
characteristics of pyranometer are also different from the
characteristics of PV modules. Because of these differ-
ences, there is a difference between the irradiation that

1-4244-0016-3/06/$20.00 ©2006 [EEE
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measured by the pyranometer and the irradiation that PV
array actually received. Dirt on the surface of the modules
or degradation of EVA layer may reduce the input energy
too. The following loss factors are considered as a factor
to reduce the input energy in this method.

1. Shading

2. Regular loss (Dirt, Degradation)

3. Incident Angle / Reflection

The next step is photoelectric conversion. During the
ehergy conversion, increasing of the modules temperature
will lower the conversion efficiency especially in the c-Si
based PV modules. Operation point on the |-V curve is
also very important to pull the maximum power from the
systems. The reasons of the maximum power point (MPP)
mismatch have a lot of variations. PCS sometimes inten-
tionally shifts the operation point from MPP to the bad
operation point {(normally towered the open circuit voltage
(Voc) so the voltage will be higher than the maximum
power voltage (Vrmad)) to reduce its output current in order
to prevent the over voltage of the power distribution line.
PCS sometimes can not find the MPP due to the stepped
[-V curve which is observed in the partially shaded PV
array. In the case that the capacity of the PCS is smaller
than that of the PV array's, output current will e restricted
around the PCS's maximum output. PCS will not frack the
MPP and keeps constant voltage if the irradiance is very
low. The following loss factors are considered as a factor
to lower the conversion efficiency.

4. Module Temperature

5. Qutput restriction {over voltage)

6. PCS capacity shortage

7. MPP mismatch (high voltage side)

Among the MPP mismatch loss factors, MPP mis-
match in higher voltage side are mainly considered in this
analysis and lower voltage side are included in the miscel-
laneous loss because the amount of the loss are limited.
There would be a regular conversion efficiency loss due to
the mismatch of modules. The photocurrent of one string
will be restricted by the worst module so the actual photo-
current will be lower than the value which is calculated by
the input irradiance and module’s rated output current.
This loss is included in the regular loss.

In addition to these seven loss factors, the following
loss factors are also considered in this method.

8. DC resistance
9. Inverter
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voltage are shown in Figure 7, more than 50[%)] of loss are
resulted in Oct. and Nov. 2004, Feb. and Apr. 2005. Fig-
ure 8 shows the results of miscellaneous loss. More than
50[%] of loss are resulted in Dec. 2004 and Feb. 2005.
The reason of these losses was snow coverage. Since we
are measuring the irradiation by pyranometer, there was a
situation that snow on the pyranometer melted but PV
array still covered by snow. Except these two loss factors,
other loss factors showed predictable range of loss
through the year.
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Figure ¥ Annual perrormance rauo and sysiem yleida 1or
three array configurations.

Performance ratio for all types are almost the same
through the year but type1 has about 30[%] more system
yield compare with type3. Type3 has more reflection loss
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especially in winter but less temperature increasing in win-
ter compare with the type1. Detailed numbers are summa-
rized in Table1.

Table 1. Analysis results of three array configurations.

Type1 Type2 | Type3
Annual system yield [h] 1330 1175 1039
Annual P.R. [%] 78.0 77.8 78.4
Loss (Temperature) [%] 2.8 2.5 1.8
Reflection loss [%] 3.3 4.5 4.9
Number of systems 74 17 5

CONCLUSIONS

Detailed performance analysis results of clustered PV
systems are summarized in this paper. Characteristics of
12 loss factors including snow coverage are clarified. Re-
sults indicate that grid voltage and snow coverage caused
serious performance loss in some cases. Different array
configurations are also compared. Difference of the per-
formance ratio between south oriented PV svstems and

[4] T Yamada, H Nakamura, T Sugiura, K Sakuta, K Kuro-
kawa, “Refection loss analysis by optical modeling of PV
module” Solar Energy Materials & Solar Cells, Vol.67
pp.405-413 (2001)
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TRANSLATION EQUATIONS FOR TEMPERATURE AND IRRADIANCE OF THE I-V
CURVES OF VARIOUS PV CELLS AND MODULES

Yuki Tsuno" 2, Yoshihiro Hishikawa' and Kosuke Kurokawa?®

' National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics
Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan

2 Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan

ABSTRACT

A new practical formulation for the linear
interpolation/extrapolation is proposed in order to translate
the |-V curves to target conditions of irradiance (G) and PV
device temperature (T). The accuracy of the method is
investigated based on the experimental |-V curves of
various kinds of PV cells and modules. By utilizing this
method, four or three |-V curves measured at any Gand T
can be used as the reference |-V curves. This makes
practical translation procedure much easier. The calculated
I-V curves over a wide range of G and T well agree with

measured results for various kinds of PV cells and modules.

The difference between the calculated and measured Prax
was 0.5% or less for indoor experiments, and 1.0% or less
for outdoor experiments. These results indicate that the
translation of the |-V curve based on the method is
effective for estimating the performance of various PV
devices under various climatic conditions.

INTRODUCTION

It is useful to understand the effect of the irradiance
and temperature on the photovoltaic (PV) cell and module
performance, in order to estimate their I-V curves under
various climate conditions for power rating and energy
rating. Although translation equations based on "shifted
approximation" are employed on irradiance dependence in
some current standards [1, 2], those equations can deviate
from experiments when the variation in the irradiance
and/or temperature is large. Also some equations are
applicable only for limited kinds of PV devices. Translation
of the I-V curves for G was discussed by Hishikawa et al.
originally for a-Si solar cells [3] and incorporated in JIS
standards. Recently, the linear interpolation method of the
I-V curves by a linear interpolation for both G and T was
proposed based on experimental (indoor and outdoor) data
on various kinds of PV cells and modules by Marion et
al.[4]. The method can accurately estimate the
performance of various kinds of PV cells and modules for a
wide range of irradiance (G) and temperature (T) [4, 5]. It
requires that G (lsc) or T of the reference I-V curves is the
same. However, it is not always possible to obtain such
reference |-V curves, especially under outdoor conditions.
In this study a new practical formation for the linear
interpolation/extrapolation is proposed. The accuracy of
the method based on the experimental |-V curves of
various kinds of PV cells and modules is investigated.

1-4244-0016-3/06/$20.00 ©2006 IEEE
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LINEAR INTERPOLATION/EXTRAPOLATION METHOD

The procedure of the linear interpolation/extrapolation
of the present study is as follows. The measured
current-voltage characteristics are corrected to target G
and T values by equations (1) and (2).

Vi=Vi+a-(r,-1) ™)
Li=1+a-(I,-1,) @

Here, 11 and V¢ are the current and voltage of the
reference |-V curve measured at an irradiance Gy and
temperature T1. |2 and V2 are the current and voltage of the
reference |-V curve measured at G, and T». Iz and V3 are
current and voltage of the |-V curve at Gs and Ts. which is
the target of the translation. The (11,V1) and (l2,V2) shold be
chosen so that I2 = |1 + (lse2 - Isc1). Here, lse1 and lse2 are the
short circuit current of the refrence |-V curves. a is an
arbitary constant (See Fig. 1). When 0< a <1, the
procedure is interpolation, When a <0 or 1> a , the
procedure is extrapolation.

1"' ol (GMT1)

<

= (G, T3)

§ s

S

(&)
e Gy Ty) ,
=1+ (e L) (Vo 1) \ \

Voltage [V] ——>

Fig.1Schematic procedure for the calculations based on
Egs. (1)-(4). I-V curves measured at the irradiance and
temperature of (G4, T1) and (G2, T2), shown by blue lines,
are translated into the I-V curve at (Gs, Ts), shown by the
red line. Measured |-V curve at (Gs, T3) is also shown by
crosses, which is in good agreement with the calculation.
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Typical single-crystalline Si, polycrystalline Si,
amorphous Si and a-Si/thin-film crystalline Si tandem cells
were used as samples. Their sizes ranged 2-10 cm?. They
were attached on metal plates, whose temperature was
stabilized at 20°C, 30°C, 40°C, and 50°C by a flow of
temperature controlled water. The temperature was
controlled within a nominal accuracy of £0.2 °C. A solar
simulator was used as the light source of 100 mwWicm?.
Irradiance was controlled by metallic thin film neutral

Aancihs filtlare Far aarh enlar rall fanir rafaranca 1.\ Alinrac

F1g.ZIvieasurea (CIrcles) ana caicuiatea (lines) I-v curves ot
a polycrystalline Si solar cell. |-V curves measured at G=0
and 100 mW/cm? and T = 20°C and 50°C were used for the
reference |-V curves.
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Fig.5Measured (symbol) and calculated (line) I-V curves of
polycrystalline solar cell. The |-V curves at (100 mwWiem?
25°C) and (20 mwW/em?, 50°C) is successfully translated
into the |-V curve at (52 mW/em?, 40°C). Blue lines are two
reference |-V curves measured at different irradiance and
temperature. |-V curve measured at (52 mW/em?, 40°C) is
also shown by crosses, which is in good agreement with
the calculation.

Fig. 6 shows the example of the linear
interpolation/extrapolation based on four reference |-V
curves into the target I-V curve by the following procedure
(1)-(3). Points denoted as 1-4 represents the reference |-V
curves. The point denoted as 7 is the target I-V curve.

(1) -V curve 5 is calculated by |-V curves 1 and 2.
(2) I-V curve 6 is calculated by |-V curves 3 and 4.
(3) |-V curve 7 is calculated by I-V curves 5 and 6.

It is noted that other order of the calculation is also
possible. At least three reference I-V curves can calculate
the |-V curves at wide range of G and T as will be
demonstrated in Fig. 10.

0?2
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In this experience, lsc was used instead of G
(equation (5)), because irradiance measured by
pyranometer is not proportional to lsc due to spectral effects.
Fig.8 shows typical example of experimental and
calculated results for c¢-Si modules. This figure
demonstrates that the calculated |-V curves agree with the
experimental curves very well, also for modules. These
resulting I-V curves in this figure do not include data near
Voc because measurement data points of reference |-V
curves were measured from ls. to 1=0. If data near Vo is
desired, reference |-V curves shall be measured down to
near -lsc.

Comparisons of calculated and measured |-V curves
were made using RMSE between measured and
calculated Pmax. Fig.9 shows RMSE of Pmax for ¢-Si module,
plotted versus the short circuit current lsc and module
temperature T. Each point includes data from 30-600 |-V
curves. RMSE for wide range of G (0.1—1.0mW/cm2) and T
(6 -70°C) is less than 1.5%. This result indicates that the
present method can calculate the |-V curves of the PV
modules for the whole range of G and T of the outdoor
conditions of the present study, based on only four
reference |-V curves. It should be noted that the number of
the reference |-V curves may be further reduced in some
cases. Fig.10 also shows plot of RMSE of Pmax for c-Si
module. The number of the reference |-V curves is three,
as shown by the open circles in the figure. RMSE at most
of the conditions is less than 1.5%.

Table 1 shows average and standard deviation of the
difference between measured and calculated Pmay Of each
module. This result indicates that the linear interpolation
method is applicable for various kinds of PV modules
under various climatic conditions.



Although both the interpolation and extrapolation are
possible by the present procedure, interpolation usually
results in better agreement with the experiments than
extrapolation. Therefore, choice of the reference I-V's is
important for calculating the I-V's in a wide-range of G and
T, as shown in Figs. 9 and 10.

80
.i i
[ ] M

Fig 9 RMSE between measured and calculated Pmax
for a single crystalline silicon module, plotted versus the
short circuit current Isc and module temperature T. Circles
represent the conditions of reference I-V curves.

80

70

RMSE [%]

3

g
|

ure [deg C]

short circuit current Isc and module temperature T. Circles
represent the conditions of reference |-V curves.

Table 1 Average and standard deviation of the
difference between measured and calculated maximum
power of each module.

Module Ave [%] SD [%]
c-Si 0.1 0.8
¢-Si (3 references) 0.4 2.1
pc-Si 0.2 0.8
Hetero-junction 0.1 1.0
CIs 0.4 0.8

EfE%% Papers

CONCLUSIONS

A new practical formulation for the linear
interpolation/extrapolation is proposed, in order to translate
the |-V curves for the irradiance G and temperature T. The
accuracy of the translation is investigated based on the
experimental indoor and outdoor |-V curves of various
kinds of PV cells and modules. By utilizing this method,
four or three |-V curves measured at any G and T can be
used as the reference |-V curves. This makes practical
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ABSTRACT: The islanding phenomena of PV inverter are obviously influenced by the regenerative loads
such as motor load and resonance circuit. In Japanese situation, the motor loads of 1KV or less are used
in the certification test and evaluated in order to test the islanding detection device in a severer case from
the viewpoint of safety. However, the motor load is not very clear in the specification of a standard motor to
use for the examination so that there are diverse and unspecified kinds. Accordingly, it is certainly not easy
to standardize the motor load for certification test around the world. On the other hand, in IEEES29-2000
and |IEC62109CD2 standard, resonance circuit is used instead of motor load for the examination with
consideration of regenerative load characteristic. Therefore, It is necessary to confirm whether the
resohance circuit can simulate the motor load properly under the islanding condition.

Keywords: Motor load, Resonance load, Islanding, Grid-Connected, PV System,

INTRODUCTION

The islanding phenomena of PV inverter are
obviously influenced by the regenerative loads
such as motor load and resonance circuit. From
the safety point of view, the regenerative load is
generally used in the islanding prevention test to
obtain more severe case for islanding detection.

Less than 1kW grinder load, which has
comparatively large inertia, is adopted in
Japanese certification test of islanding“)

prevention function for PV inverter connected to
low voltage(200V) distribution line. The grinder
load is not so popular, but actually used by the
low voltage customers such as small factory and
so on. As we have to take the worst case into
account for ensuring safety, we are using the
grinder load in the certification test as a general
worst case for islanding detection.

It is certainly not easy to standardize the
motor load for certification test around the world.
On the other hand, resonance circuit is
standardized in some IEC standards in stead of
motor load with consideration of regenerative
load characteristic. Therefore, it is necessary to
confirm whether the resonance circuit can
simulate the motor load properly under the
islanding condition.

The objectives of the study are to confirm
the application of motor load on the “Testing
Procedure of Islanding Prevention Measures for
Utility Interactive PV Inverter” by experiment.
The experiments practiced for this study are as
followed.

1) The experiment concerning similarity and
difference of islanding characteristic between

1-4244-0016-3/06/$20.00 ©2006 IEEE
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using motor load and using resonance circuit as
regenerative load.

2) The experiment concerning the possibility of
standardization of motor load in the islanding
prevention test.

Measuring the electric energy

Islanding phenomena tend to depend on the
regenerative energy of motor load and/or resohance
circuit.

From this point of view, we tried to evaluate the
regenerative energy of several sampled motor loads
and resonance circuit as the beginning of the study.

In the JET attestation system, the motor load is
used in order to imitate the motor loads that actually
exist on the electric power line and in order to
imitate the situation that both a lot of PV generation
systems and the motor dynamos drive parallel.

Moreover, the motor load that runs without
electric power becomes a pilot of the voltage and
the frequency of the electric power lines, imitates
the situation in which many PV generation systems
including the voltage control type are connected in
parallel extremely well, and operates as an ideal
motor load ty?e dynamo that does not supply the
active power.( )

In addition, because it turns out that the motor
load supplies and absorbs an reactive electric
power in the past study results, it is used in the JET
attestation examinations as the severest load
condition for the inverters that try to change the
frequency. However, the detail of the specification in
the capacity and moment of intarsia of the motor
load used for the examination have not be clarified
currently; the influence to Islanding detection differs
depending on the size of capacity, moment of inertia,
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and so on that affect the islanding detection time
as a result. Therefore, it was assumed that the
characteristics of electric energy of an individual
motor loads were clarified by measuring the
electric energy of various motor loads.

Measuring the electric energy of the motor
load

Four types of commercialized inductive
grinder motor load connected 200V line are
used.

The rated capacity and the moment of inertia
of each load are shown in Table 1.

The electric energy of the motor loads was
measured by timing for the resistance load to
consume about 10% (20V) of the rating voltage
(200V) of the electric energy remained in the
motor in the condition that a motor load and a
resistance load were connected in parallel to the
AC utility power simulator.

1. Increase the electric power consumed by
resistance load connected to the motor
load from 0 to 4000V by 100W.

2. Separate both motor load and resistance
load from the AC utility power simulator
by opening the switch (SWg) when the

timing is t=0.
3. Observe the voltage V:between lines of
the motor load of resistance load

connected in parallel and measure the
time delta X (Sec) while the voltage
attenuate to about 10% (20V)of rated
voltage (200V).

4. In the same way above, measure the time
delta X (Sec) using different motor load in
table 1.

Fig.1 shows the circuit chart to measure the
electric energy of the motor load.

. —O/D Py
AC utility
power
Simulator| =W
—O/"‘ L »
Vv, AC Voltmeter

M : Motor Load
R :Resistance Load

Fig.1.Measurement circuit of electric energy of
motor load
Measuring the electric the
resonance load

In |IEC standard, the inductivity load of the
resonance load is defined by the formula (1) that
is power conditioner ratings active effective

output capacity

energy of

ER%< Papers

To execute our experiment, we had to decide
the power conditioner output capacity. We
examined the ratings output capacities of the
certified power conditioners by JET authentication
system in recent years.

As a result, since the majority of the power
conditioners were 4kW of the rated output capacity,
we decided the rated output capacity for the
experiment was 4kW.

It is same as measuring the amount of electric
energy of the motor load, amount of electric energy
in resonant circuit is measured timing for the
resistance load to consume about 10% (20V) of the
rating voltage (200V) of the electric energy
remained in the condition that a resistance load and
a inductive and capacitive load were connected in
parallel to the AC utility power simulator.

Moreover, the amount of inductive load was
2.6kVar, which was calculated with formula (1), and
the same amount of capacitive load, 2.6kVar, was
inserted.

P,=Q, xPyp (1)

Peur: Power conditioner ratings output
Q. 065

1. The resistance load connected with the
resonance load parallel increases the electric
power consumed by the resistance load from
0 to 4000V by 100W.

2. Switch (SWocg) is opened according to the
timing of t=0, and the motor load and the
resistance load are separated from AC utility
power Simulator.

3. The voltage between lines of the resistance
load of each resistance load connected
parallel that can be put is measured, and
even about 10%(20V) of 200V in the ratings
voltage measures delta X(Sec) until
attenuating.

Fig.2 shows the circuit chart to measure the
electric energy of the resonance load.

L o0
AC 1
utility L-C
power SWe
[Simulator | 5 - by
Wy AC Voltmeter R
L :Reaclor Load
C :Capacitor Load
R :Resistance Load —1

Fig.2. Measurement circuit of electric energy of
resonance load

Table 1. Specifications of grinder motor loads {100V single phase)

Type Rated capacity Moment of inertia Real power ' Reactive power’ rpm
Motor A 170 W 0.03 N-m 67 W 170 Var 3000 rpm
Motor B 365W 0.03 N-m? 80W 270 Var 2970 rpm
Motor C 620 W 0.06 N-m’ 80 W 280 Var 2970 rpm
Motor D 645 W 0.06 N-m* 95 W 175 Var 2960 rpm
*} in case of no load
2416
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Measurement result of electric energy

Fig.3 shows an experimental result concerning
regenerative energy of motor loads and resonance
circuit defined in IEC standards.

The EUT is disconnected from the
experimental circuit in all cases. The relationships
between the lapse of time from separation of SWce
to the time when remaining voltage of load reaches
20V (see Fig.4 and Fig.5 as references), which is
10% of rated AC voltage{V+) , and consumption of
resistance load (AR) are indicated in Fig.3.

The lapse of time decreases according to the
increase of consumption of resistance load because
the consumption rate of the regenerative energy
becomes faster.

The results reveal that motor C and D have
almost the same regenerative energy, and the value
of regenerative energy of motor A is close to the
value of motor B. Besides, it is also clear that the
value of the resonance circuit is almost equal to the
value of motor A. Namely, it is judged that the
resonance circuit and motor A is almost equivalent
to the regenerative energy of the resonance circuit.

4 otor B4ER
- o otor BEOR
g m otor JEEN ml

w otor 170W
“E-rezonance cicud
~1E
H
s
bl
B X\
" M
DT‘“’WMJ. PR RRRRINNe g

mmmmmmmmmmmm A b

1] 500 1000 1500 2000 2500 so0n 3500 4000
teghtie bad R B )

Fig.3. Measurement result of electric energy

However, because the result of above
experiment is the length of time that it takes for the
resistance load to consume the electric energy
accumulated in each load, it is not clarified yet that
whether the actual power conditioner would result in
islanding by the influence of electric energy that was
examined in this experiment.

Confirming the effectiveness of the motor load
and resonance load by islanding experiment

The Islanding characteristics of motor A and the
resonance circuit are the most similar in the
regenerative energy. The 4kW PV inverter
described above is used as a EUT in all islanding
test below.

Fig.4 and Fig.5 show the relationship between
islanding detection time, which means the time
islanding continues (run on time), and imbalance
condition of P and Q when both of the passive
detection measure (PDM) and the active detection
measure (ADM) in the inverter for islanding
detection are masked.

Namely, islanding is detected only by voltage
and frequency relays of the inverter in the cases.

In all figures, positve P means that load
consumption is lager than real power of inverter just

before SWcg opened, and positive Q means that the
system is in inductive condition just before SWcg
opened.

Table 2 and 3 also show frequency values of 0.3
sec. after 31 opened.

Islanding

~

AXimgec)

-10

Aactie 10
pow erf) -10

Arcactie power &)

Fig.4 Islanding detection time limit by motor load

AZl{ngen)

Areactive power §)

Fig.5 Islanding detection time limit by resonance
load

It is shown that each characteristic of both
resonance circuit case and motor load case is
similar when P=0%, Q = 0% and P = 0%, Q = 5%.

Summary

By the experiment in which the electric energy of
the motor loads and resonance |load examined in
|EC standard were measured, it was confirmed that,
when the resonance coefficient was Qf=0.65, the
amount of the electric energy of the resonance
load had was almost equal to the amount of
electric energy of the 170W motor load.

However, we cannot tell whether the influence by
both loads on the islanding detection device of an
actual power conditioner would be the same only by
the evaluation of the electric energy that each load
had.

Therefore, the islanding experiment was
performed respectively of the resonance load and
the 170W motor load with a real power conditioner.

It was confirmed that using either the resonance
load or the 170W motor load, it resulted in islanding
when the active power and the reactive electric
power were in the state of equilibrium

In the same time, it was confirmed that, when
the reactive electric power of both of the loads were
in the state of equilibrium, it takes about 600ms for
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Table 2. Frequency analysis result after 0.3 seconds after it blacks out {(motor load 170W)

Reactive power (\Var)
-10% 5% 0% +5% +10%
10% | 45.45Hz | 49.99Hz | 50.51Hz | 52.09Hz | 55.24Hz
Active | % | 45.84Hz | 47.14Hz | 50.05Hz | 49.99Hz | 50.00Hz
power | 0% | 45.62Hz | 50.05Hz | 50.02Hz | 50.04Hz | 53.27Hz
(W) [ 45% | 4337Hz | 49.96Hz | 49.96Hz | 49.99Hz | 53.31Hz
+10% | 45.61Hz | 48.51Hz | 49.96Hz | 49.97Hz | 54.92Hz

Table 3. Frequency analysis result after 0.3 seconds after it blacks out (resonance load).

Reactive power (Var)
-10% -5% 0% +5% +10%
-10% | 46.75Hz | 4843 Hz | 5237 Hz | 5353 Hz | 54.14 Hz
Active | 5% | 46.47Hz | 4825Hz | 5021 Hz | 53.12Hz | 54.46 Hz
power | 0% | 46.88Hz | 4805Hz | 5059 Hz | 52.09 Hz | 54.03 Hz
(W) | +859% | 46.82Hz | 4847 Hz | 4851 Hz | 52.74 Hz | 54.08 Hz
+10% | 46.78Hz | 4835Hz | 4881 Hz | 52.12 Hz | 54.39 Hz

the power conditioner to detect islanding and stop
its operation even when the active power is
increased and decreased.

From these results, it was shown that the
resonance load and the 170W motor load have a
similar characteristic in the influence given to the
islanding detection device.

However, it also turns out from the result that the
motor load cause islanding in wider range of load
condition than the resonance load.

Therefore, we focused on the result of the
frequency analysis after the black out considering
the frequency would be the reason that the motor
load caused islanding in wider range of load
condition.

As a result, it was confirmed that in the load
condition to cause the islanding phenomenon the
frequency change after a black out is significant with
the resonance load where the frequency barely
changed with the motor load.

It is assumed that with the motor load the
islanding phenomenon was caused in a wider-
ranged load condition because the motor load
maintained the frequency before blackout by
absorbing and supplying the reactive electric power
after the black out.

In the meanwhile, it is confirmed that the motor
loads radically increases and decreases the
frequency far more than the resonance loads in the
other load conditions than that what causes
islanding.

It is assumed that there is a possibility that the
motor load increased the degree of the frequency
change affected by the other inductive loads or
capacitive loads.

The result of the experiment shows that there is
similarity between both loads since the power
conditioner resulted in islanding in the same load
condition with either resonance load or the 170W
motor load.

2418

For the future study, the load condition to cause
the islanding phenomenon will be confirmed by
using other motor loads, the similarity between the
170W motor load and other loads will be verified, it
will be confirmed whether a motor load absorb or
supply reactive electric power after black out, and
other influences by inductive loads and capacitive
loads conditions will be clarified.

(1) October,2002 Electrical Safety & Environment
Technology Laboratories’Test Procedure for Grid-
connected Protective “Equipment, etc. for
Photovoltaic Power Generation Systems

(2) 'New Sunshine project New Energy and
Industrial Technology Development
Organization (NEDOC) consignment business

result report’ (PV) systems practical use
technology development “"Research and
development of photovoltaic use system

evaluation technology" and (research and
development of technological in surrounding
evaluation system) in 1994 fiscal year'
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PERFORMANCE AND RELIABILITY OF
1 MW PHOTOVOLTAIC POWER FACILITIES IN AIST

Kenji OTANI", Takumi TAKASHIMA' and Kosuke KUROKAWA?
" National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
2 Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo, 184-8588 Japan

ABSTRACTS

The AIST 1MW PV facilities consist of a total of 211
inverters of the 4-kW type designed principally for
residential uses, and tens of inverters of the 10-kW unit
designed principally for industrial uses. These inverters are
connected to low-voltage (200V) distribution line in AIST.
There are 13 kinds of PV modules from 5 different
technologies and tens kind of PV inverter from several
manufactures. Benchmarking these PV components
reveals the differences of the performance and reliability
among other PV components under actual conditions.

During the first two years, there were several failures
in the system components, mainly caused by improper
installation works. But the PV facilities showed proper
performance ratio (around 70%) and perfect availability in
total. The mean time of failure was 7.9 times. More than
64% of individual PV systems had no failures. The mean
time to repair was only 3.3 days.

INTRODUCTIONS

One of Japan's largest installations of
megawatt-class solar photovoltaic (PV) systems was
completed at AIST Tsukuba in April 2004 [1]. The main
specifications of the facilities are indicated in Table 1.

The biggest characteristics of the facilities are the
complexes of many numbers of systems (inverters) and of
many series of PV components manufactured by many
main PV companies, such as Sharp, Kyocera, Sanyo,
MELCO, Shell Sclar Japan, MSK, MHI, OMRON and etc.
The configurations of PV component, newly introduced in
spring 2004, are listed in Table 2. 78 of these 211 PV
systems were monitored every one minutes with our
special data-logger, and the rest were checked by human
inspections.

The PV systems are located both at ground and on
the rooftop of AIST buildings. The orientations of the arrays
were set at the angle which the buildings faced towards,
while the tilt angles were typically set at 15 degree
optimized for summer season. A surrounding environment
(shadings and etc.) varies significantly in the place.
Therefore the treatment of the surrounding environment is
important for benchmarking the PV systems. The location
map of the PV systems is shown in Fig. 7 and the
specifications are listed in Table 4.

Table 1. Main specifications of AIST 1MW System

Location Tsukuba (Japan) 36°3' N — 140°8'E

Total capacity 1 MWp (869 kWp in FY2003)

Annual praduction 1 million KWh per year

CO, emission | 300 tons per year
reduction
PV module area 6,500m" (0.7% in AIST Tsukuba)
Investment 800 million Yen in FY2003
PV modules 5,600 PV modules
5 different technologies, 13 kinds of
modules
Tilt angle: 15° {typical)
Grid-connected 211(4kW), 14(10kW) and etc.
inverters

Monitoring systems | 6 seconds and 1 minutes sampling

intervals

Production:

2 000 MWh since Apr. 2004

Table 2. Configurations of PV components newly installed
in April 2004

PV Module Inverter (4 kW Unit)
Sharp NT-132BJ Sharp JH-L304
Sharp ND-150AM Sharp JH-M303
Kyocera SPG167 Kyocera PVN-402
MELCOC PSCM-126F MELCO PV-PS05C2
Sanyo HIP-180B2 Sanyo S55-TLA0A2
Shell Solar J | RK148/A-HP MHI SPV400
MHI MA100J1-YF OMRON | KP4OF
MSK LP5125-180JH OMRON | KP40OF

PERFORMANCE ANALYSIS
Performance indices

For comparing the performance of energy conversion
with different configurations of PV systems, three of the
IEC standard 61724 performance parameters were used in
this study. These parameters are the final system yield Y;,
reference yield Y,, and performance ratiec PR, and
calculated by the equations below [2];

1-4244-0016-3/06/$20.00 ©2006 IEEE 2046
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P
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Where E: Net energy output during a certain period, Pg:
Nominal DC power of the installed array, H: Total in-plane
irradiation during a certain period, and Gp: Reference
irradiance {i.e. 1 kW/mz)

Macro analysis of the performance

Total power outputs fed into certain buildings have
been monitored every 6 seconds or 1 minute. The
performance indices calculated from these values may be
helpful for knowing general evaluations of the facilities,
such as the effect of energy saves and electricity demand
power leveling. Since April 2004, the total amount of output
energy has been more than 2 000 MWh, which value was
almost equivalent to 1% of total electricity consumption in
AIST Tsukuba during the same period.

Meonthly trends of the final system yield and of the
performance ratio are shown in Fig. 1. Annual final system
yield was 985 hours and performance ratio was 0.70 in
2005. These values are almost equal to the average of
ones for residential PV systems in Japan. The facilities
may realize a smaller scale of large introduction of PV
systems in Japan.

X

N Final System Yield

o =
=
o

Monthly Final System Yield [kWh/kWp]
[=F]
=)
@
Performance Ratio (PR)

=]

Apr Jun Aug QOct Dec Feb Apr Jun Aug Oct Dec Feb Apr
2004 2005 2008
Fig. 1. Monthly Energy Yield since April 2004

Micro {Site) analysis of the performance

The range of the final system yield and of the
performance ratio for each PV system was very wide
because of wide variety of the specifications and
configurations of PV systems in the facilities. Fig. 2 shows
the frequency distributions of the final system vield
obtained from 78 systems during a year {Aug. 2004 to Jul.
2005). There are appreciable differences of the distribution
of the performance between ground and rooftop installed
PV systems. The main reason of the differences was
shadings.
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Fig. 2. Frequency distributions of the final system yield
obtained from 78 systems

Long-term reliability of a PV system

The earliest PV system in AIST Tsukuba
“Sakura-kan” was completed in the beginning in 1995 and
has never encountered significant troubles and failures
during continuous operation time. The visible defect
(browning) of the surface of PV modules were found for
almost half of PV modules on the arrays like a brown and
black checkered pattern. This browning phenomenon
seems to be caused by partial shadings on arrays by high
pine trees on the south.

However, the performance decrease could not be
found after ten years' operation in spite of the browning
surface modules. Fig.3 indicates the scatter graph of the
final system yield versus the reference yield during the
initial three years and last three years.
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Fig. 3. Final system yield versus reference yield during the
initial and last three years (after 10 years’ operation)

Statistics of the reliability of PV systems and failures
By using 78 PV systems of 211 distributed PV

systems completed in spring 2004, the evaluation of the
statistics of the reliability of PV systems, such as mean
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time between failure (MTBF) and mean time to repair
(MTTR), has been done. The failures were found both by
human inspections and by the performance diagnostic tool
using our simulation technology.

There were no failures found from 50 PV systems
during the last 20 months in the initial stage. Most of
failures are concentrated on the worst three systems, and
they decreased their MTBF values significantly. The
frequency distributions of MTBF and of MTTR are shown in
Fig. 4 and 5. Higher availabilities A, calculated by eq(4),
were obtained as shown in Fig.6.

_ MTTR {4)
MTBF + MTTR
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Fig.4. Frequency distribution of MTBF from 78 PV systems
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Fig.5. Frequency distribution of MTTR from 78 PV systems
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Fig.6. Frequency distribution of availability from 78 PV
systems

Many numbers of minor failures were reported and
repaired. The failure most frequently found was damaged

back sheet of PV modules scratched in the installation
works. These minor failures had little effect on the
performance. The history of minor failures and monitoring
errors are listed in Table 3.

Table 3. History of failure, replacement and repair
(half-tone dot meshed rows indicate failures in PV
components, and white-colored ones indicate failures in
monitoring)

No. | Term Location | Failure

1 Oct-2004 | AIST 7-5 | Inverter Replace

2 Oct-2004 | AIST 3-5 | Monitoring error

3 Dec-2004 | AIST 3-5 | EMCCB trip

4 Dec.2004 | AIST 3-5 Interm!ttent inverter

operation

5 Dec-2004 | AIST 3-5 | Broken module glass
Energy -

6 Jan-2005 Center Wrong wiring

7 Feb-2005 S Broken module glass
Center

Mar-2005 | Display Monitoring error
Apr-2005 | Parking Damaged back sheet

10 | May-2005 | AIST3-5 | Strike through
AIST 3 &

11 | May-2005 | Energy Damaged & colored

back sheet

Center

12 | May-2005 ;’j‘gk'”g Flooded terminal box
AIST Colored & burnt back

13 | Jul-2005 512 sheet

14 | Jul-2005 '2"13; Inverter replacement

16 | Sep-2005 | AIST 3 Monitoring error

CONCLUSIONS

This paper describes field experiences from one of
the largest PV facilities in Japan. The performance indices
and reliability statistics were calculated for the first twenty
meonths. The annual final system yield was 985 hours and
the performance ratio was 0.70 in 2005. By using our
performance diagnosis tool, failures in the operation were
checked for 78 PV systems in order to evaluate the
reliability of PV systems. The degradation of the
performance was not found from our earliest PV system
after ten years’ operation.
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Table 4. Specifications of each PV System

ER%< Papers

N

Peak Buil
No. Location PV Cell Type PV Module Manufacture Power d
[kWp] Year
Solar Photovoltaic Monument
1 AIST Tsukuba Center Bus Stop multicrystal Si Fuji Sash 4.C 2004
Building-Integrated Photovoltaic System
3 Tsukuba Headquarters and Information monocrystal Si Matsushita Ecology Systems 41.0 2004
Technology Collaborative Research Center
4 Central 2-12 "OSL" Annex monocrystal Si Fuiji Sash 12.0 2001
Solar Photovoltaic Pavilion
7 Central 3-5 monocrystal Si Sharp 17.0 2004
8 multicrystal Si Kyocera 18.0
9 multicrystal Si Mitsubishi Electric 16.0
10 multicrystal Si Shell Selar Japan 16.0
1 heterojunction Si Sanyo 17.0
12 amormphous Si Mitsubishi Heavy industries 16.0
Solar Photovoltaic Parking
13 Central 3-5 Parking monocrystal Si MSK 86.0 2004
15 Central 2 Peripheral Road Parking monocrystal Si MSK 104.0 2004
24 Central 7-5 Parking monocrystal Si MSK 39.¢ 2004
AIST Central Energy Center
16 Eastern Hillside multicrystal Si Kyocera 8.0 2004
17 Southem Hillside multicrystal Si Kyocera 440
18 Western Hillside multicrystal Si Kyocera 52.0
19 Rooftop multicrystal Si Kyocera 36.0
20 Ground monocrystal Si Sharp 68.0
multicrystal Si Shell Sclar Japan 24.G
Solar Photovoltaic System on Roof
2 Central 1-1 hetercjunction Si Sanyo 34.6 2004
5 Central 2-12 "OSL" Ahnex multicrystal Si Sharp 162.0 2004
6 Central 2-7 monocrystal Si Sharp 4.0 2002
14 Central 3-9 multicrystal Si Shell Solar Japan 20.0 2004
21 Central 7-3 multicrystal Si Mitsubishi Electric 38.3 2004
22 Central 7-4 multicrystal Si Mitsubishi Electric 121 2004
23 Central 7-5 multicrystal Si Mitsubishi Electric 121 2004
24 Central 7-6 multicrystal Si Mitsubishi Electric 28.2 2004
25 Keyaki-Kan multicrystal Si Sharp 21.0 1987
26 Sakura-Kan multicrystal Si Sharp 72.0 1995
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A Comparison of Output Envelope Waveforms of The Delta-Sigma
Modulated Class D Series Resonant Inverter
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Abstract— The output envelope waveforms of the delta-sigma
modulated Class D series resonant inverter is analyzed, com-
pared, and discussed based on the simulation results with Matlab
Simulink simulator. The Class D inverter operating at 200
kHz generates 50 Hz envelope waveform through the additional
switching legs. Firstly, the relationship between the feed-back
gain of the delta-sigma modulator and the output envelope
waveforms is clarified. Secondly, the variable parameters are
expanded to the loaded Q-factor Q)r. For Qr= 10 to 10000,
the output waveforms are analyzed. The simulation results show
that THD is held under 3 % from )7 = 50 to 100. The obtained
envelope waveform is highly qualified as an ac power source.

I. INTRODUCTION

Class D inverter [1]-[5] is one of the high-frequency high-
efficiency resonant power sources, which can be applied
to de/de resonant converters, radio transmitters, electronic
ballasts for fluorescent lamps [2], and wireless communica-
tions [3]. The theoretically zero-current/zero-voltage switching
(ZCS/ZVS) enables its operation at several hundred kHz (ZCS)
to several hundred MHz (ZVS) with maintaining the high de/ac
power conversion efficiency.

The output power of Class D inverter is usually controlled
with the operating frequency modulation (FM control). On
the other hand, control methods without changing frequency
are also proposed to maintain the ZVS/ZCS operation. Tn
[4], irregular driving patterns are given to the gate drives
to regulate the output power. In a full-bridge series resonant
inverter, Pulse-Density Modulation (PDM) which controls the
average output power by changing the driving-pulse density is
proposed and applied to an induection melting [6]. However,
in these types of regulation methods, harmonics and low
frequency components are concerned.

Contrary to the above, the authors proposed to use the
low frequency components actively [3]. The output envelope
waveform of 50 Hz, which can be applied to an ac power
supply, is formed with a Class D series resonant inverter driven
at 200 kHz. With the 1-bit delta-sigma modulator [7], instead
of a periodical-long-switching pattern for a 50 Hz sinusoidal
waveform, the 1/0 driving pattern is easily and continuously
generated based on the 50 Hz sinusoidal signal. That prevents
the increasing of the driving-pattern digits leading up to the
longer calculation time or the need of a higher performance
micro-computer. The 1-bit signal keeps the constant frequency,
which maintains the inverter operation with ZCS/ZVS.

0-7803-9390-2/06/$20.00 ©2006 IEEE
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Fig. 1. Class D voltage-switching series resonant inverter.

In the previous research [5], the modulation process and
the additional circuits to obtain a 50 Hz sinuscidal output
envelope were shown. Those were tested with Matlab Simulink
Simulator. The output waveforms with different feed-back gain
G of the delta-sigma modulator were visually compared under
the condition of the loaded Q-factor €y, = 20. In the optimum
case, its total harmonic distortion (THD) was 6.24 %. Further
reduction of THD and discussion about the appropriate Qp
were the outstanding issues.

This paper firstly focuses on the relationship between the
feed-back gain of the delta-sigma modulator and the output
envelope waveforms. The flat peak and a small jump at the
zero-crossing point of the envelope waveform can be improved
by the feed-back gain.

Secondly, the variable parameters are expanded to the
loaded Q-factor )r. The damping which strongly affects the
envelope is characterized by the Qr. The output waveforms
and the total circuit operation are simulated by the Matlab
Simulink simulator with @y from 10 to 10000. The output
waveforms of the Class D series resonant inverter in steady
state are confirmed by the numerically calculated waveforms.
The obtained results are analyzed and discussed. The simula-
tion results show that THD is no more than 3 % from ©p =
50 to 100. The obtained envelope waveform is highly qualified
as an ac POWer SOurce,

II. DELTA-SIGMA MODULATED CLASS D SERIES
RESONANT INVERTER

A Class D voltage-switching series resonant inverter [1] is
shown in Fig.1. It is composed of two switch devices 57,
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Fig. 2. Theoretical waveforms in Class D voltage-switching series resonant
inverter with infinite 7, in regular operation.

Fig. 3. 1st order delta-sigma modulator.

Sz, a band pass filter (BPF) L-C, and a load resistance Rr.
The pair of switch devices performs as one switch which
alternately connects with the dc voltage source V7 and an
earth with keeping 0.5 duty ratio at the switching frequency
fs; i.e. while one device is ON the other is OFF in a half period
T/2 = 1/2f,. In the regular operation, it keeps alternate
operation by a half period, which generates a square waveform
g2 at the input terminal of the BPF. Assuming an ideal BPF
at the operating frequency, only the fundamental component
of the square waveform flows to the load resistance in ideal.
The output current ¢, becomes sinusoidal and it flows through
each switch by a half period. As shown in Fig. 2, while the
switch current gy or ége is flowing through one switch, the
voltage across the switch device vg1 or vge is zero, and the
switching transition occurs at the zero current point, therefore
the 100-percent power conversion efficiency can be achieved.

The 1st order delta-sigma modulator is shown in Fig. 3.
If an ac signal with frequency f, zo = sin(2n f4), is directly
given, the inverter output voltage waveform », becomes like
Fig. 4 (a) [5]. The area painted over is filled with the

il 0005 001 005 T ] 0.005 0401 0015 [EA

Thne [sec) Time [sec]
(a) (b)

Fig. 4. Calculated waveform o, [5]. (a) The original input signal
zo(t) = sin(100wt) is given, and (b) the converted input signal zi(t} =
| sin(1007e)| — 0.5; fs = 200 kHe, G=06.

Tnverter output voltuge vo [V]
Taverter output voltage vo [V]
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sinusoidal waveform with f;. Sinusoidal envelopes appear in
both the positive and negative edges with dc bias. To obtain
a sinusoidal output envelope, the input signal zg is converted
to the waveform having its absolute value, and shifted down
to the half of the original amplitude. Finally, the ac signal zg
is converted to xz1=|sin(2r f)|-0.5, which is shown in Fig.
5 (a). The range of z; is -0.5 to 0.5 V. The input signal
to the integrator x5 is x(-G to z+G, because the output
value of the quantizer x4 is -1 for a negative value, 1 for
a positive value, and O for 0. When z4 = 1 the driving code
becomes ‘1’, otherwise ‘0°. While the code ‘1’ is given to
the inverter, Sp and S> repeat the regular cycle; if the code
‘0" is given, the driving pulse of S, keeps O during the term.
When the code ‘1’ is continuously given, the amplitude of
the output waveform increases and approaches 0.64V7 which
is the theoretical amplitude in the regular operation. On the
other hand, when the code ‘0’ is given in series, the amplitude
decreases and approaches 0. Giving x; to the modulator, the
Class D series resonant inverter generates the output voltage
v, like Fig. 4 (b). To obtain the envelope waveform from
v,, additional circuit (Fig. 6) is needed [5]. The circuit is
composed of two full-bridge switching legs. At the first stage,
the RF waveform v, is rectified by the full-bridge rectifier.
At the second stage, the rectified waveform V,. is inverted
by half eycle of the frequency f synchronized with the input
signal. Through the L PI", the envelope v, is obtained. All the
switches maintain ZCS.

III. SIMULATION AND NUMERICAL ANALY SIS

Before the simulation and calculation, the parameters have
to be given. The input voltage and the load resistance are given
as Vi =1V, and Ry = 1§} for generalization of the analysis
[8]. The switching frequency f,=200 kHz and the loaded
quality factor of the series resonant circuit )y are given.
The resonant inductance and capacitance are I = Qp Ry fw;,
and ¢ = 1/w?l = 1/w;Qr Ry, where w; = 2nf,. The
low pass filter Ly-Cy is designed to reduce the switching
frequency component and to be a resistive impedance as
far as f;, which is important to keep ZCS. Giving the (Y,
Lp=R7Cy/{(1 + 27 f.CrR1)*}.

In the numerical analysis, all the elements including switch
devices are assumed to be ideal. The driving pattern is gener-
ated following the process of Fig. 3. In the numerical analysis,
the LPF of the additional circuit is not covered. Waveforms
are numerically calculated from the differential equations. In
the circuit of Fig. 1, the equations are

c ds—f = iy, (1)
di,

L pr (2)
where v and vy, are voltages across the capacitance C' and
the inductance L. as depicted in Fig. 1. In (2), vgo takes ¥y and
0 according to the drive pattern; thus, there exist two states.
When the driving code ‘1’ is given, each state is maintained
by a half period. When ‘0’ is given, vse maintains O during

= —vg — Rpi, + vsa,
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Fig. 5. Signal waveforms of the 1st order delta-sigma modulator. (a) Input
signal to the modulator . Input waveform to the integrator g, input
waveform to the quantizer 2z, and the output waveform x4 with the feed-back
gain (b) G=0.5, (¢) G=0.48, and (d) G=0.6.
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Fig. 6.

Additional circuit.

one period. According to the continuity of inductor current
and capacitor voltage, the initial values of i, and »¢ in a half
period take the final values in the previous half period. Tn
steady state, the last value should be equal to the initial value
in one total cycle. Using this condition, the circuit equations
(1) and (2) are numerically solved with Runge-Kutta formula.

In the simulation, a total system composed of the 1-bit delta-
sigma modulator, Class D series resonant inverter, and switch-
ing legs is built as a simulation model. The values of the circuit
clements and parameters are given as functions which conform
to the numerical analysis. The switching leg composed of
51 and Sy is replaced by a controlled voltage source which
generates a voltage pattern based on the modulated code. The
switches S5 to S5 are substituted with ideal diode models;
and S7 to Syp are synchronized with the analog ac signal.
For LPF, Cp =10 puF is given. In all the simulation, odel5s
solver is used because of the calculation time. The relative
torelance is set to e~ ? with considering strict ZCS transition.

TABLE I
OBSERVED THD WITH SIMULINK SIMULATION

ar THD &
10 0074500754 08
20 0.0620-0.0624 0.6
10 0052500531 0.5
20 0.0313-0.0322 0.5
S0 0.0220.0.0227 0.5
60 0.0219-0.0226 0.5
65 0.0218-0.0227 0.5
70 0.0222-0.0229 0.5
100 0.0251-0.0257 0.5
150 0.0344-0.0350 0.5
500 0.1464-0.1472 0.5
0287502880 0.5

04750485 0.5

IV. FEED-BACK GAIN OF THE DELTA-SIGMA
MODULATOR

As shown in Fig. 3, the feed-back gain G is from the
quantizer output signal z, which takes £1 and 0. As is
clear from the block diagram, z; takes a value from xq-
G to z1+G, which is integrated as x3. The output value of
the quantizer z, is determined by x3. Assuming that the
input signal is z1=|sin(2w f¢)|-0.5, according to the above
process, the modulator should generate the modulated code
which causes a full-scale waveform, when G'=0.5. The signal
waveforms obtained by simulation are shown in Fig. 5 (b).
Figure 7 (c) with Qr=20, for example, shows the inverter
output waveform. The sinusoidal envelope with the amplitude
of 0.64V} is confirmed. Around the peaks of x4, x4 keeps ‘1’
which causes the flat top of the output envelope. If G' < 0.5,
x3 increases near the peaks of x; as shown in Fig. 5 (),
which enlarges the flat part of the envelope. On the other
hand, x4 keeps ‘0’ near the bottom peak of z;, which causes
a ‘wide’ zero-crossing point in the envelope. Increasing of G
is a solution to the problems. As shown in Fig. 5 (d), the
signals are continuously changing with ¢ = 0.6. However,
another problem occurs. Around the bottom peak of z1, x4
takes frequently ‘1°, which causes small voltage at the zero-
crossing point. As shown in Fig. 4 (b), the minimum amplitude
is not reduced down to Q. In addition, z4 often takes ‘0’ around
the peak of x;. That is effective against the flat top, however
reduces the amplitude of the output envelope. Both the flat
top and small jump at the zero-cross cause THD. For G =
0.5, and 0.6, with (Jr = 10, and 20, THD are calculated by
the simulation. These results are shown in the top 4 lines of
Table I Judging from the results, G=0.5, which keeps the
zero-crossing point, is more suitable for low THD. Higher G
than 0.6 causes larger jump; and lower & than 0.5 causes flat
top and wide zero-crossing point.

V. OQUTPUT ENVELOPE WAVEFORMS UNDER VARIOUS
{)-FACTORS

The damping which strongly affects the envelope is char-
acterized by Qz. To find the appropriate J-factor, the output
waveforms and the total cireuit operation were simulated by
the Matlab Simulink simulation from ¢y =10 to 10000. The
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feed-back gain G was set to 0.5, Considering the calculation
time and the performance of the computer, the simmlation time
was set less than 0.1 sec. The output current <, of the Class
D series resonant inverter and the envelope output voltage v,
are shown in Fig. 7. As is clear from Fig. 7, as (Jr. becomes
large, i, becomes flat, the amplitude becomes smaller, and v,
becomes close to the square waveform. The time constant of
the envelope 7 is given by 7 = 2L/ Ry = 2Qjw, [6]. In case
of Qr=10, 7=0.016 ms; and Qr=10000, 7=15.9 ms which
is longer than a half period of 50Hz. The small T enables
the quick response of the inverter; therefore ¢, keeps the
characteristic of z4. Basically the quick response is preferable,

EfE%% Papers

based on the simulation results. The relationship between
factor and the output waveforms have been discussed and
analyzed. The appropriate ¢}z, is found based on the simulation
results. From ¢z = 50 to 100, THD is held under 3 % . The
obtained envelope waveform is highly qualified as an ac power
SOUICe.
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Abstract—This paper proposes distribution-unified power flow
controller (D-UPFC) in the distribution system. D-UPFC
controls distribution system voltage during voltage sags and
swells. A single-phase ac-ac converter in a matrix arrangement
and a series transformer are the components of D-UPFC. Ac-ac
converter generates power using switching pattern when
voltage variation occurs. The series transformer compensates
voltage to the loads. Voltage swell condition is considered when
reverse power flows from the clustered photovoltaic (PV)
system. D-UPFC simulations show the possibility of controlling
distribution sy stem voltage when voltage sags and swells occur.

L. INTRODUCTION

Nowadays, it is common to find disturbances in the
amplitude or waveform shape of current and voltage in the
electric systems. These conditions could produce fails in the
equipments, raising the possibility of an energy interruption.
The voltage fast variations that appear in the AC mains
during 10 seconds or less are commonly known as voltage
sags and swells. These variations are produced by normal
operation of high power loads as well as theirs connection
and disconnection;, the voltage fast variation effects are
function of the amplitude and the duration of the event. Some
studies show that 92% of all disturbances in the electrical
power distribution systems are produced by voltage sags.

Dynamic voltage restorer (DVR) and uninterrupted power
supply (UPS) systems had been researched and developed
along the last decades and they are capable to compensate
voltage sags and swells. However, they depend on devices to
store energy, like large capacitors or battery bank. If the
power increases, the size of the devices will increase [1].

One of other options is to compensate voltage sags using
PWM ac-ac converter with autotransformer. This system can
compensate until 50% voltages sags and swells. It can
continuously shape the output voltage to be sinusocidal (low
THD) even when the input voltage is distorted [2]. The other
option is step voltage regulator (SVR), which is based on
autotransformer with line drop compensator. However, the
autotransformer drives all the load power due to it is
connected between the load and the AC mains [1].

Recently, voltage swells are occured not only heavy load
condition but also reverse power flow from distributed
system (DG) like PV systems. Ifa large number of PV power
generation systems are connected to distribution lines, the
voltage at the customer’s terminals may increase because of
reverse power flow. This increase will depend upon the

1-4244-9717-7/06/$20.00 ©2006 IEEE.
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relative sizes of the load and the power generation. Since the
sending voltage on the secondary side of the distribution
transformer is typically set at a value higher than the standard
voltage under current operating procedures, the voltage at the
end of a distribution line could exceed the upper limit even
with slight reverse power flow, possibly created by the PV
system during light-load hours in the daytime [3].

Thus, this paper proposes D-UPFC in order to control
voltage swells as well as sags. Figure 1 shows the D-UPFC
concept in the distribution system.

To PV systems
—

o Ve Ll
1Isz Vsec
Vs lout Viine
p——

AC-AC

converter | Vout

D-UPFC

Fig. 1: D-UPFC concept in the distribution system

D-UPFC is installed at the back of pole transformer and it
connects with load side. Also, D-UPFC is applied in the
radial power system. D-UPFC consists of single-phase ac-ac
converter in a matix arrangement and a series transformer.
Ac-ac converter generates power using matrix arrangement
and a secries transformer compensates voltage to the load.
D-UPFC does not need any energy storage device and it fast
compensates load voltage during voltage sags and swells.

The remainder of this paper explains more specified
D-UPFC concept, operation and control method. Finally,
voltage sag and swell simulation results are discussed.

- 1367 -
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flexibly. Pole transformer’s secondary voltage range of Japan
18 10136[V,mms]. If the value of v, is larger than 2[V] of
voltage margin, D-UPFC performs.
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transformer to PCC is 45[m]. PCC connects with load and the
clustered PV system. The lead-in wire 1s 15[m] between PCC
and loads with clustered PV system.

Simulation model parameters of D-UPFC are shown in
Table 1. Line impedance parameters refer to electric
company information of Japan. A series transformer turns
ratio for compensating the maximum voltage sag or swell
condition refer to [1], [5]. Input and output filters should
reduce the switching frequency harmonios present in the
input current /55, output voltage 7, respectively. It refers in

[6].

TABLE 1
D-UPFC SIMIUT.ATION PARAMETERS



in swells condition.

Figure 7 shows voltage sag simulation waveforms.
TABLE III
VOLTAGE SWELL SIMULATION RESULT

I No D-UPFC conirol D-UPFC control

bl Vin Viine Vlire sum Wiire Viine sum

0 99.7 99.7 99.8 99.7 99.8
50 99.7 99.7 99.8 99.8 100.5
100 99.7 99.7 99.8 100 101.6
*150 99.7 100.4 102.8 *00.1 *014
*260 99.7 100.9 104.1 *09.8 *102.3
=250 99.7 101.4 105.5 =99.1 *103.1
=300 99.7 102.1 107 "99.2 ~04.1

All parameters show in rms value, ** means controlled value
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Fig. 7: Voltage sag simulation (Ve 5[V, rms] at 0.12[s])
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All the waveforms were simulated from 0[s] to 0.4[s]. The
top waveform shows V. 5[V,rms] at 0.12[s]. The second
waveforms indicate V5, and V. s The third and fourth
waveforms show ac-ac converter output voltage and current,
respectively. The bottom waveforms show switch 1, 3 and
switch 2, 4 reference signals. When V. 5[V.rms] happens at
0.12[s], ac-ac converter operates from 0.14[s] because it uses
mms function. Also, switch 1 and 3 perform pwm control.
Switch 2 is opened, switch 4 is closed. After V. starts
0.12[s], the transient-state condition continued for two cycles
and then it becomes the steady-state condition.
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Fig. 8: Voltage swell simulation (¥;,.» 300[A, rms] at 0.12[s])
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Voltage swell simulation waveforms are shown in Fig. 8.
The top parameter shows reverse power 1,,. This simulation
implemented from 0[s] to 0.4[s]. I, inputs 300[A,rms] from
0.12[s]. When reverse power flows from [, to the grid,
Vige s Increases to 107[V,rms]. Ac-ac converter operated
from 0.14[s] due to using rms function. Under the voltage
swell condition, bi-directional switch S; 1s closed and S; 18
openned. Also, S, and S, implemented pwm control. Through
the reverse power flow simulation, PCC voltage 1s controlled
from 0.32[s]. D-UPFC couldn’t control distribution voltage.
Also, the phase of ac-ac converter output voltage and current
1s changed.

In this research, D-UPFC capacity and the phase angle
variation during reverse power flow were not considered
fully.

IV, CONCLUSION

This paper proposed D-UPFC in the distribution system.
D-UPFC scheme, operation and control method are shown.
D-UPFC works as an autotransformer and consists of ac-ac
converter and a series transformer. Voltage margin and load
voltage compensation methods are introduced. Simulation
model is used in voltage sag and swell test. Through the
simulations, D-UPFC shows the possibility of controlling
distribution voltage when voltage sags and swells oceur.
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Abstract- For popularization of photoveltaic (PV) systems, it is
important not only approach to cost reduction, but also approach
to mass production. As one of the approaches, this paper presents
the inverter by utilizing ready-made power integrated cireuit. The
integrated circuit (IC), Audio Power Amplifier, has been
developed and mass-produced with the PWM switching technique
recently. Most of photovoltaic (PV) inverters are based on the
PWM technique. The proposed inverter has possibility of the
dramatically cost reduction and mass production. Availability of
the application of the IC to the PV inverter is shown by
experimental results.

[. INTRODUCTION

During the last few years, there has been a growing market
demand for photovoltaic systems. In Japan, the long-term R&D
roadmap titled “PV2030” was set up m May 2004, in which
100 GW of total domestic installation of PV systems are
expected. When 20 GW/y PV market is considered to exist in
2030, the level of their need is considered adaptable enough for

- VCC

{a) Half bridge power stage.

st |4

Gate
driver

Audio
signal in

s2 |:

T Yo - VCC

(b} Full bridge power stage.

Fig. 1. Power stage of class-D audio amplifier.

1-4244-0497-5/06/$20.00 © 2006 |IEEE

automated assembly lines and power ICs [1]. On the other
hand, power ICs, for example audio power amplifiers, have
been developed and mass-produced with PWM techniques
often called “class-D audio amplifier.” A typical class-D audio
amplifier consists of a modulator that converts an analog or
digital audio signal into a high-frequency PWM signal,
followed by a half bridge or full bridge power switch. The
circuit configuration can be found in the main circuit of
photovoltaic (PV) inverters. Therefore, if the IC is used in
place of the main circuit of the PV inverter, a lot of discrete
elements of the mverter can be reduced. That increases
productivity of PV inverter.

In this paper, a stereo class-D audio IC was tested with
bridge-tide -load (BTL) configuration.

II. READY-MADE PWM ICS FOR AUDIO POWER AMPLIFIER

There are many kinds of class-D audio ICs available. For
monaural one, the amplifier consists of an audio input channel,

2.

5

JR——]
7]
>

Audio
signal in TV,

- VCC

(¢) Single ended power stage for stereo and
Bridge tide load power stage for monanual.
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Fig. 2. Imput stage of BTL configuration (a) and relationship of phase
difference hetween two carrier signals (h).

a PWM modulator, a half bridge power stage as shown in Fig.
1 (&) or a full bridge power stage as shown in Fig. 1 (b). For
stereo one, the amplifier consists of two audio input channels,
two PWM modulators, two half bridge power stages or two full
bridge power stages. In addition, the sterco amplifier makes
single-ended (SE) as well as bridge-tied-load (BTL) operation
possible as shown in Fig. 1 (c).

In the BTL application, two audio input channels receive an
audio signal ‘v’ but the phase of one of the channels should
be inverted ‘—v’ as shown im Fig. 2. In this case an
approximately four times higher output power can be obtained
with the same loudspeaker impedance. [n some of the ICs, the
switching patterns for the two channels are not synchronized
by the phase difference # between the two carrier waves.

[I. APPLICATION OF GRID-CONNECTED SYSTEM

Fig. 3 shows the circuit model of grid-connected system with
a class-D audio IC. The particular parameters for the system
are shown in Table L. [n this circuit, a stereo class-D audio IC
“TDA7490 (STMicroelectronics) [2]” was used as a main

TABLEI
SYSTEM PARAMETERS
Parameter Value
Ly Le 31 uH
Co 1 pF
A 15.610)
vy 1426 W
Zs1, Zsz S1mQ+2 pH
Vdch Vdc? 2V
Ca, Ciz 2200 pF
i
Tek _JL___® MPos 0000
: Ch. 3
NN
AR AN SARS SARW FARWFAN:
INNY A
ATERR VAV R VAv ATV AR ¥
: Ch.4
Wreis T -
THI 200VDy CHA 200V 220.366%

Fig. 4. Carrier waveforms of TDAT450 for PWM stage 1 (Ch. 3}, and PWh{
stage 2 (Ch. 4}, Honzontal: 2.5 ps/div., chanmel 3, 40 2.0 Vidiv,

circuit of this system. The TDA7490 consists of two
preamplifiers has a constant gain & — 2.5, two integrators, two
PWM stages containing of & half bridge and a common section
which contains an oscillator and some protection circuit. These
components are designed optimally in the IC. In this circuit,
the two integrators are treated the same as OP amplifier and the
integrator 1 operates as a voltage follower, and the integrator 2
operates as an inverting amplifier for the BTL configuration.
The two switching carriers have the phase difference about 50

—
Vo - L [
nt 1de
LB—« b oy
= - i
[ FWM ‘ L o Z
Ll stagel e :
Preatnplifier] Ttegrator]

TDATAH)

Vs

FPreamplifier?

E Integrator? ’_j\
-f

Fig. 3. Circuit configuration
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Fig. 5. Output voltage from PWM stage 1 (Ch. 1), PWM stage 2 (Ch. 2) and
v; (Math. ch.). Time base: 1.0 ps/div., channel 1, 2: 50 V/div., math channel:

50 V/div.
5 /

Amplitude of the carrier valtags (Foar) [Vp-pl

0 I
k) s 0 a5
Input de woltage (Vde) [V]

Fig. 6. Relationship between input dc supply voltage (¥z) and carrier
voltage (Vo).

degrees at 200 kHz as shown in Fig. 4 and oufput voltage from
PWM stage 1, PWM stage 2 and v; is shown in Fig. 5. The
inverter has constant gain K given by

gotee s M

VC(UT

The carrier voltage v, changes proportionally inside of the IC
with dc supply voltage V. (= Vart Vaz) as shown in Fig. 6.
Therefore the value of the inverter gain K is approximately 40
calculated using (1). In this system, the inverter uses one
current sensor to sense inductor current #;,; for current control
by a PI controller consisted of the analog circuit. The transfer
function of the PI controller is given by

C)=k,+ 2 @

The complementary sensitivity function is given by

o KOG E) 3)
SL+K(sK,+K,)

The angular frequency wg and resonant frequency f,,, of this
controller are:

e
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w5 )
L

% 5

fmn_zﬁ ()

The value of proportional gain Kp= 0.47 VA and integral
gain K; = 1000 VA''s" are selected for the current feedback.
From these values, this system is free of the influence of the
resonant frequency (fz) between inverter filter capacitor (Cy)
and grid impedance (Zs; and Zg) because the resonant
frequency of the control £, (= 4 kHz) is lower than /7 (= 113
kHz). Therefore, the controller responds quickly to the target
frequency of this system (50Hz) with stability.

Synchronization of the inverter output current (is} to the
capacitor voltage (vc) is achieved by the analog multiplier
implemented for the regulation of the current reference by
multiplication of the sensed capacitor voltage (kneeve) and the
regulated dc voltage as the current control level (V). The
sensor gain (K.} 1s adjusted constant gain level about 0.015.

IV. EXPERIMENTAL AND SIMULATION RESULTS

An experimental circuit based on Fig. 3 was designed and
built on the 100 mm * 100 mm printed circuit board (PCB) as
shown in Fig. 7. A stabilized dc power supply was used as a dc
link voltage. Since of ¢class-D audio IC has the limited input dec
link voltage within &+ 25 'V, this system cannot output the grid
voltage in fact. For this approach, it’s possible to convert the
voltage level with a transformer. However, it isn’t necessary to
use a transformer if an appropriate power IC which withstands
the voltage level of the grid voltage. In the experiment, the 4
quadrants bipolar power supply (KIKUSUI: PBX40-10, output
impedance Zspr=2 0 [€2]) and function generator (KENWOOD:
FG273A) was used as the simulated grid voltage to connect the
circuit without low frequency (LF) transformer. The voltage of
the simulated grid vy was assumed to be 14.6 V and maintain

1140

March 24, 2007
223



%‘hh TUAT Photovoltaic Student Think-in

- -
1 ¢ = 70 e 0.7
Pe=o [ Va0 -
g 50 0.5 g
. . g 40 0.4 &
and the power factor 1 is calculated with: S a4 0a M
20 —l— efficiency 0.2
1 7 10 —— fact 0.1
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A= v 7 0 5 10 15 20 25 30
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Output power [W]

. . . N
The maXImm value of the efﬁmency is 76.6 % and pOWE?l‘ Fig. 10. Measured power factor and power conversion efficiency of the

factor is 0.9828 at 20.1 W, and that of the power factor is class-D andio IC in the grid-connected condition.

0.9882 and efficiency is 73.9 % at 29.4 W. From the datasheet

[2], the power conversion efficiency of the power IC is 89 % at
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25 W + 25 W output power for each speaker in stereo audio
configuration when 1 kHz audio signal is given. These results
also cannot be made an easy comparison each other from the
standpoint such as difference of the circuit configuration, the
load impedance and power factor. However, this system
operates in the grid-connoted condition with marinating more
than 70 % of the power conversion efficiency in the range of
8.95 W to 29.47 W. Additional selection of the power device
may increase the efficiency.

V. CONCLUSION

This paper has presented a prototype of grid-connected
inverter utilizing ready-made [Cs for class-D audio power
amplifier. Simulation results and hardware measurements have
demonstrated the feasibility of the proposed system in scale-
downed grid-connected condition. There remains a few
challenges, for example withstand voltage. However, the
implementation ready-made [C will make a large contribution
to the mass-production with the reduction of discrete elements
in the system and the simplification of the production process.
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Abstract— Solar cells have a current-voltage (I-V) char-
acteristic affected by the radiation and temperature. To
obtain the maximum electricity from solar cells, the power
converters for PV (photovoltaic) modules have a function
called MPPT {Maximum Power Point Tracking). Under the
various conditions, the dc input voltage or current is con-
trolled to track the maximum power point (MPP) where the
PV modules feed the maximum output power. A module
integrated converter (MIC) is individually installed behind
of a PV module. In this type, manufacturers can obtain the
basic characteristics of the PV module in the manufacturing
process. Therefore, the domain of MPP can be predicted.

The plane division (PD) MPPT method takes full ad-
vantage of the known [-V characteristic. The I-V plane is
divided into two domains by a PD function. One includes
MPPs and the other one doesn’t. Using the PD function,
the operating point can rapidly approach the MPP.

In this paper, a combination of two or three linear func-
tions is proposed and tested. In circuit experiments, the
measured approaching time to the MPPs is reduced from
87.0 9% to 65.0 % for the combination of three linear func-
tions compared to the IncCond algorithm. Based on the
measured data, the proposed functions are also compared to
the previous PD functions. Consequently, the square root
function and the combination of three linear functions are
superior to the others. The PD-MPPT, which can be easily
added to various MPPT algorithms, is effective to accelerate
the MPPT operation of the MIC.

I. INTRODUCTION

Photovoltaic (PV) system, which is one of the important
renewable energy sources, has been increasing world wide.
Solar cells are semiconductor devices, therefore they have a
current-voltage (I-V) characteristic which is affected by the
radiation and temperature. Most of the photovoltaic solar
energy systems are combined with the power converters in
accordance with the application. To obtain the maximum
electricity from the solar cells, the power converters for
photovoltaic (PV) system have a function called MPPT
(Maximum Power Point Tracking) which controls the de
voltage or current at the primary side to track the operat-
ing point where the PV modules feed the maximum output
power. Usually, the solar power system for residential use
is composed of many modules and a central PV inverter.
Each PV module has own characteristic by the condition,
therefore the PV modules connected in series and paral-
lel sometimes suppress their cutput power esach other and
form a complex [-V characteristic which makes it difficult
for the MPPT to seek the maximum power point (MPP).

Rs [

—

JJD

Ipn Rsh V
O
Fig. 1. An equivalent circuit of a solar cell.
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Fig. 2. I — V characteristics of the PV module: T = 25 °C, F'F
= 0.7, from the top, radiation = 1.0 kVV/m2 with Pirax = 94.0
W to the bottom, radiation 0.1 kVV/m2 with Pprax = 6.86 W,
every 0.1 k€W /m? of radiation.

On the other hand, the module integrated converter (MIC),
which is installed by each PV module, tracks MPP by one
module and feeds de or ac power depending on the sys-
tem [1] [2]. In this type, even if some modules are shaded,
the others can independently continue the operation at the
MPP. AC module, which is composed of one PV module
and one interconnected inverter, has been in the market [2].
The output port is directly connected with the ac wiring.

In AC module, different from the central inverter sys-
tem, a PV module and a MIC are combined in a factory.
Therefore the manufacturer can know the basic character-
istics of the PV module before combining the PV module
with a MIC. Based on the known data, the distribution
of MPPs can be approximately predicted. The I-V plane
division (PD) MPPT method takes full advantage of the

1-4244-0497-5/06/$20.00 © 2006 |IEEE 1265
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known I-V characteristic. The I-V plane is divided into
two domains; that is, one includes MPPs and the other
one doesn’t. The operating point can rapidly approach the
MPP passing quickly the domain without MPPs. Around
the MPP, the algorithm is switched to the IncCond method
[3]. The PD-MPPT can be easily applied to various MPPT
algorithms. In case of DSP based controller, only several
additional program lines are required.

The authors have proposed two PD-MPPT methods for
the module-integrated converter [4] [5]. The first one di-
vides the I-V plane by a linear function. The measured ap-
proaching time was dramatically reduced. However, there
was a limitation of the linear function; that is, when the
slope is adjusted to MPPs in high radiation conditions, it
i1z not always effective for low radiations, and vice versa.
Against the limitation, the second one used a square root
function instead of a linear function. A square root func-
tion well follows the MPPs from low radiation to high ra-
diation condition; l.e. it Is effective for wide range of ra-
diation. The range of rapid approach is expanded more
than that with linear function. However there remains a
disadvantage; i.e. the calculation process of aquare root
function may need high-performance calculator.

In this paper, in addition to the above PD functions, a
combination of two or three linear functions is proposed
and tested. Linear functions are switched by the operating
range. The combination of linear functions should be able
to cover the MPPs in wider range than the single linear
function with lighter calculation process than square root
function. In circuit experiments with a 100 W class inverter
and a Solar cell array simulator (Kernel) [6], the measured
approaching time to the MPP is reduced from 86.9 % to
2.5 % for the combination of two linear functions and from
87.0 % to 65.0 % for the combination of three linear func-
tions compared to the IncCond algorithm. Those results
and characteristics are also compared with the previously
proposed PD functions in advantages and disadvantages.

II. MaxiMuM PowER POINT TRACKING

An equivalent circuit of a solar cell can be given as Fig.
1, which provides an equation for [-V characteristic of a
solar cell,

I=ILn—Ip

B gV +R.I) V+ RJI
=Ipn—1 {exp (714]\3311 —1| — 7Rsh , (1)

where V(V) is the PV output voltage, I(A) the PV out-
put current, I,(A) the photocurrent, Ip(A) the diode
current, I,{A) the saturation current, A4 the ideally fac-
tor, g(C) the electronic charge, kp(JK 1) Boltzmann’s gas
constant, T(K) the junction temperature, Rg(}) the se-
ries resistance, and R, (Q?) the shunt resistance [7]. Fig.
2 shows simulated [-V characteristics of a PV module un-
der the condition of 7' = 25°C, FI' = 0.7, from radiation
= 0.1 kW/m? with Pyyax = 6.86 W to radiation = 1.0
kW/m? with Pyax = 94.0 W by 0.1 k€W/m?. The fill
factor F'F is defined as FIF = IppaxVigax /TseVee, where
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Fig. 3. Flow chart of PD-MPPT algorithm added to the IneCond
algorithm.

Irrax and Vg4 x are the current and voltage at MPP, and
I and V,, are short-circuit current and open-circuit voli-
age of the PV module. FPs4x means the PV output power
at MPP, which is equal to Iprax Varax. Substituting V'
= (0 into (1}, the I, can be cbtained, which is considered
equivalent to the Iy, i.e. proportional to the radiation.
Substituting I = 0 into (1}, the V. can be obtained, which
increases logarithmically with increasing radiation level [7].
The MPP of each I-V characteristic is shown in Fig. 2. To
seek the MPP, various algorithms have been proposed. The
Perturb and Observe (P&Q) algorithm and Incremental
conductance (IncCond) algorithm are widely used because
of the simple structure and the few measured parameters.
The P&Q algorithm finds the MPP by periodically per-
turbing the PV output voltage V and comparing the PV
output power F,, with the previous one F,_1. The per-
turbing operation at the MPP and the instability against
rapidly changing atmospheric conditions are problem in the
P&O algorithm. The IncCond algorithm requires the same
measured parameters to the P&QO algorithm and obtains

dP/dV using

dP _ d(IV) _ dr
= = IV = (2)

Thus, by measuring the incremental and instantaneous PV
module conductance Le. dI/dV and I/V, the direction of
the MPP can be known [3]. When dP/dV = 0, the operat-
ing point is at the MPP. If dP/dV > 0, the operating point
is to the left of MPP. If dP/dV < 0, the operating point
is to the right of MPP. This algorithm keeps the stability
at the MPP and can follow it against rapidly changing at-
mospheric conditions [3]. A flow chart shown in Fig. 3 is
mainly with the IncCond algorithm because the PD-MPPT
algorithm is added to the IncCond algorithm as the items
enclosed with double line.
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iz given as a PD function f(f), As shown in Fig 4 (a),
the linear function doesn’t cross the MPP existing area.
Assuming that an opersting point is presently at (V,,, I.,)
in Fig 4 (a). The next targeted voltage Vi, of the op-
erating point iz caloulated with f(I) using the measured
current f,. [f Vi, = V¥p,, the operating point is out of the
MPP existing area. Considering the rapidly changing at-
mospheric condition, only when Vi, = Vi, and dP/dV < 0
are satisfied, the Vo, is returned to the main algorithm as
the targeted voltage V. following the flow chart shown in
Fig. 3. Afming at the V., the MIC increases the output
power. Consequently the operating point moves to (Viq,
Int1). The next targeted voltags Vi is calculated with
Iny1. The same process is repeated toward the crossing
point. X of -V characteristic and the linear function. Ower
the crossing point X, the targeted voltage is given follow-
ing the conventional IncCond algeorithm. The difference
between Vi, and V¥, Is far larger than AV, therefore the
operating point moves quickly toward the proper direction.
As shown i Fig. 3, the PD-MPPT method is a0 simple
that it can be expressed by just additional three items en-
closed with double lins, which are also easily applied to
P& algorithm or the othera.

B PD-MPPT Using Sguare Root Functions

As shown in Fig. 2, the distribution of MFPs iz not
linear. Therefors, the linear function canmnot follow whaole
the range. The difference betwsen the linear function and
MPPs in low radiation conditions is large when the slope of
the function iz adjusted to MPPs in high radiation condi-
tions, and vise veraa. As a aolution, the aquars root func-
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Fig. 4. Transition of the opsrating point with (a) a linear func-
tion, (b) a squars root function, and (¢} a combination of linear
functions.

tion is applied as f(I) instead of a linear function. The
given function shown in Fig. 4 (b) seems a quadric func-
tion, however the targeted voltage Vo, iz calculated from
I, with the sguare root function. As shown in Fig. 4 (b),
the curve of the square root function well follows the dis-
tribution of MPPs from low radiation to high radiation.
The square root function expands the range following the

PD-MPPT algorithim.
0. PD-MPPT Using Combination of Linear Funclions

The sguare root function remains a short coming; that
is, the calculation process of the squars root function itself
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Fig. 5. Experimental circuit.

may need a high-performance CPU. To follow the MPPs in
wide range, in this paper, combination of linear functions
is proposed and tested. As shown in Fig. 4 (c), linear func-
tions are switched at the crossing points Y and Z based on
the current /. The combination of linear functions and ‘if
branch’ is lighter than square root. function in the calcula-
tion process. The short coming of the single linear function
is improved by using the combination of linear functions.

IV. PV MobDULE CONDITIONS AND PD FUNCTIONS

Two types of PV module are performed by a Solar cell
array simulator (Kernel) [6]. One has the I-V character-
istics shown in Fig. 2 under the condition of T' = 25°C,
FF = 0.7, from radiation = 0.1 kW/m? with Pyax =
6.86 W to radiation = 1.0 kW/m? with Piyax = 94.0 W.
For the other one, T' = 25°C, FI' = 0.8, from radiation
= 0.1 kW/m? with Pyrax = 8.05 W to radiation = 1.0
kW/m? with Pyyax = 94.5 W. The high slope linear func-
tions (HS) are decided based on the linear approximation
using the 6 coordinates of the MPPs with the radiation
from 0.5 kW/m? to 1.0 kW/m? by 0.1 kW/m?. For the I-
V characteristics with FF=0.7, (a) [ = 5V — 182 which is
drawn in Fig. 4; for those with FF=0.8, (b) I = 7.7V —303
are respectively given. The PD functions should be shown
as functions of I, however only for linear functions, their in-
verse function is shown with considering the visual impres-
sion corresponding to the expressions of ’high’ and low’
slope. The low slope linear functions (LS) have a slope
of 1/10 of the above slopes; thus, (c) T = 0.5V — 16.2 for
FF=0.7,and (d) I =0.77V — 29 for FF = (.8 are given.
Those are obtained and used in [4].

In this paper, combinations of the high slope and low
slope linear functions (C2) are also tested. The crossing
points ¥ are (V, I) = (36.60,1.8), and (39.48,1.4) for F'F =
0.7, and 0.8 respectively. The voltage at the crossing point
calculated with high slope functions is slightly (< 0.16)
larger than the voltage obtained by low slope functions to
prevent rapid reduction of the target voltage. In addition
to the above, another lower slope function is added in con-
sideration of low radiation condition. The extra low slope
linear functions (ELS) are obtained based on the linear
approximation using the 4 coordinates of the MPPs with
the radiation of from 0.1 kW/m? to 0.4 kW/m? by 0.1
kW/m?. For FF=0.7, {(e) I = 0.146V — 4.3, for FF'=0.8,
(f) I =0.225V —8.05 are respectively obtained. The cross-
ing points Z between LS and ELS are (34.46, 0.7316), and

(38.44, 0.6) for F'F = 0.7, and 0.8 respectively. The ELS
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is used in the combination of three linear functions (C3) as
shown in Fig. 4 (c).

The square root functions (SQ) are calculated based on
the approximation using the 11 coordinates of the MPPs
with the radiation from 0.05 kW/m? to 1.0 kW/m? and
shifted to place the apex on the V axis. For the [-V char-
acteristics with FF = 0.7, (g) Vpr, = +/(1,,/0.0256)+28.55
which 1s drawn in Fig. 4 (b), and for FF = 0.8, (h)
Vrn = +/(1,/0.0662) 4 35.0 are respectively given. Those
are obtained and used in [5].

All the functions are close to the MPP existing domain
but never touch nor cross it; the constant term in each func-
tion is chosen to keep that condition. The margin between
the MPP and each function is experimentally searched to
prevent that the operating point falls into the short current
position by the error of sensing.

V. EXPERIMENTAL RESULTS

The PD-MPPT algorithms are respectively installed into
a PV inverter for the circuit experiments. The PV inverter
was designed for 100 W class AC module in a past project.
It is composed of a controller board [8] and a fly back in-
verter which is a prototype of [9]. A PD-MPPT program
is installed into the ROM of the controller board. The ex-
perimental circuit i1s shown in Fig. 5. The primary side is
connected with the Solar cell array simulator, and the sec-
ondary side is connected with AC power source (P-Station,
NF corporation). The load resistance R = 60 €2, the system
voltage v, = 100 V., at 50 Hz. The radiation parameter
of the PV module simulator was given from 0.1 kW,/m?
to 1.0 k¥W/m? by 0.1 kW/m? for FF = 0.7 and 0.8 re
spectively. The module output voltage V', module output
current I, inverter output current ¢,, and the system volt-
age v, are observed with the digital scope (DL716 YOKO-
GAWA). Examples of the observed waveforms are shown
in Fig. 6, which are under the condition of the radiation
0.5 kW/m? with F'F = 0.7. The top half shows the long-
term variation, and the bottom half shows the enlarged
waveforms on the black vertical line shown in the top half.
The output current i, is observed through a low pass fil-
ter of the DL.716 to filter out the noise. At first, the solar
cell array simulator is turned on, then, the module output
voltage V goes to V,, level and gradually reduces. The
module output current [ rises slowly from 0 A toward the
Inrax. The arrival to the MPP is measured by comparing
with the values of V and I in steady-state.

The measured time taken for the approach from the
MPPT starting to the MPP at radiation of 1.0 kW/m?, 0.5
kW/m?, and 0.3 kW/m? are shown in Table I, where Inc-
Cond, linear functions with high slope (HS) and low slope
(LS), square root functions (SQ), combinations of two lin-
ear functions (C2), and of three linear functions {C3) mean
the installed MPPT functions. For 1.0 kW/m® and 0.5
kW /m?, the test results with IncCond, HS, LS, and SC} are
reported in [5]. However the same tests were repeated with
the emphasis on the relative relation between the measured
values under the same condition and at the same time.
Generally the measured time for those is shorter than that
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TABLE 1
MEASURED TIME TAKEN FOR THE APPROACH FROM THE TRACKING START To THE MPP.

FF, Radiation  IncCond HS LS S5Q C2 C3

0.7, 1.0 kW/m? 108.1 s 38.2s (38.9) 5 36.5 s 37.8 s 37.8 s
0.7, 0.5 kW /m? 159.5 s 01.89[17.0] s 20.3 s 21.1s 20.8 s 20.7 s
0.7, 0.3kW/m? (291.9) s 170.8[12.4] s 14.1s 16.2 s 14.6s 16.5 s
0.8, 1.0 kW/m? 1124 s 34.1s 73.5[365] s 346 31.9s 35.7 s
0.8, 0.5 kW/m? 86.5 8 84.3[14.1] s 16.8 s 17.8 s 15.1s 17.3 s
0.8, 0.3 kW /m? 93.0 s 68.6[10.8] s 149.2[12.0]s 11.9s 84.3[127]s 132s

TABLE II

MEASURED TIME FROM THE TRACKING START TO THE MPF NORMALIZED BY THE APPROACHING TIME WITH INCCOND METHOD.

FF, Radiation HS Ls sQ 2 3

0.7, 1.0 KW/m? 35.3 % (36.0) % 328 % 35.0 % 35.0 %
07,05 kKW/m? 576107 % 12.7 % 13.2 % 131 % 13.0 %
07,03KW/m?  (585[4.3]) % (4.8} % (553 % (5.0) % (5.6) %
0.8, 1.0 KW/m? 30.3 % 65.4[32.5) % 30.8% 284 % 317 %
08,05 KW/m? 975163 % 19.4 % 20.6 % 17.5 % 20.0 %
08,03kKW/m? 794125 % 1725[13.9] % 1328% 975147 % 153 %

of [5], especially for IncCond in F'F' = 0.8, though the incli-
nation is quite similar. The brackets “[ ]” means the time
for which the MPPT operation was following a PD} func-
tion. For example, as shown in Fig. 6 (b), from the MPPT
starting to 17 sec (at the second grid), [ rises rapidly and V'
decreases; during this period HS is used. After the period,
I continues increasing and V decreasing slowly following
the IncCond algorithm. The numbers in the brackets “(
)" include ambiguity. It was too slight change to find the
term following IncCond in the test with LS under the radi-
ation 1.0 kW/m? with FF' = 0.7. In the test with IncCond
under the radiation 0.3 kW/m? with FF = 0.7, the begin-
ning of MPPT operation was unstable, therefore it took a
long time. For a comparison, the measured times normal-
ized with the approaching time with IncCond are shown
in Table IT. The italic number means the minimum value
under the condition. Judging from the Tables, the HS and
the LS have their appropriate range in high radiation and
low (middle) radiation respectively. Under the condition of
0.3 kW/m? with FF = 0.8, the LS extends its approach-
ing time contrary to the purpose. That can be caused by
the nearness of current I at MPP and the point X which
divides the IncCond and PD-MPPT. The C2, which has
both the advantages of HS and LS, shows good results ex-
cept 0.3 kW/m? with FF = 0.8. The C3, which has extra
low slope linear function (ELS), compensates the lack of
C2. Based on the Table II, comparing to the IncCond,
the C2 and the C3 respectively reduce their approaching
time from 86.9 % to 2.5 %, and from 87.0 % to 65.0 %
with ignoring 0.3 kW/m? with FF' = 0.7. Depending on
the choice of linear functions, the characteristics of C2 can
be improved. The SQ reduces its approaching time from
86.8 % to 66.2 %, which efficiently follows MPPs in wide
range. The characteristic of the C3 is rather close to the
SQ than the HS or the LS. If the calculation time of square

root function becomes longer by the choice of CPU, the C3
may exceed the SQ in the approaching time.

Consequently, the SQ and the C3 are superior to the
others. The choice depends on the CPU. The C2 is also
effective if low radiation conditions can be ignored. The
C2 and the C3 can be more improved by means of the
choice of functions. The linear functions should be used as
a combination, not a single function.

Against 0.1 kW/m? rapid radiation increase and reduc-
tion, the inverter response was tested with each algorithm.
With the condition of radiation between 0.7 kW/m? and
1.0 kW /m?2, sometimes inverter restart was observed in all
cases. However, in less than 0.7 kW/m?, inverter followed
the change without stopping or fault. The response time
is varied but within the same level to the IncCond because
the IncCond algorithm, which can keep tracking the MPP
against rapidly changing atmospheric conditions, mainly
controlled the operation around the MPP also in the PD-
MPPT programs.

VI. CoNCLUSIONS

The PD-MPPT method for the module-integrated con-
verter has been introduced. The PD-MPPT takes full ad-
vantage of the known PV module characteristic. Identi-
fying the domain without MPP, the operating point can
rapidly approach the MPP using a PD function. In the
neighborhood of the MPP, the algorithm is switched to a
conventional IncCond method. Circuit experiments have
been carried out with the 100 W class inverter using the
proposed algorithm. In addition to the linear function and
square roof, function, the combination of linear functions
are proposed and tested. In case of the combination of
three linear functions, the measured time taken for the
approach to the MPP is reduced from 87.0 % to 65.0 %
compared to the IncCond algorithm. Its performance is
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close to that with square root function. The characteris-
tics of the PI) functions have been compared based on the
test results and summarized. Against rapid radiation re-
duction of 0.1 kW /m?, the inverter maintains its operation
with each algorithm under the radiation of 0.7 kW /m? and
below., The response time iz kept about the same to the
IncCond algorithm, The PD-MPPT is quite simple so that
it can be easily applied to not only IneCond method but
also various MPPT algorithms. The PD-MPPT is effective
to accelerate the MPPT operation of MIC.
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ABSTRACT: In 2003, TEA PVPS Task8 published their report titled “Energy from the Desert” concerning Very
Large Scale Photovoltaic Power Generation { VLS-PV) Systems on deserts. Through their 5 year really international,
collaborative works, the book showed that VLS-PV, ranging from several mega watts to giga watts, is not a simple
dream story but becomes realistic in near future. For the past 3 years since then, specialists in the task have studied
and proposed more detailed, practical, demonstrative R&D approaches toward the realization of VLS-PV in different
regions in the world deserts: e.g., the Mediterranean region, the Middle East, Asia and Oceania. These new works
will be published soon as the Second Phase Report of Task VIII titled “Energy from the Desert - Practical Proposals
for Very Large Scale Photovoltaic Systems” and their essences are to be released at the conference right before the

publication.

Keywords: Large Grid-commected PV system, Sustainable, Desert, VLS-PV

1 INTRODUCTION

In 2003, IEA PVPS Task8 published their report
titled “Energy from the Desert” concerming Very Large
Scale Photovoltaic Power Generation (VL.S-PV) Systems
on deserts. Through their 5 year real, collaborative works,
the book showed that VLS-PV, ranging from several
megawatts to gig watts, is not a simple dream story but
becomes realistic in near fiture. For the past 3 years
since then, specialists in the task have studied and
proposed more detailed, practical, demonstrative R&D
approaches toward the realization of VLS-PV in different
regions in the world deserts: e.g., the Mediterrancan
region, the Middle East, Asia and Oceania. These new
works will be published soon as the Second Phase Report
of Task VIIT and their essences are to be released at the
conference right before the publication.

A series of these international works have been
activated as the Second Phase of IEA PVPS Task VIII
among 10 countries and 2 observer countries: Japan (OA),
Canada, Germany, Israel, Italy, Korea, the Netherlands,
Spain, U.S.A., Australia, Mongolia (obs.) and China
(obs.). It is well known that the team of this Task has
been studying on a wide range of scope by really mutual-
collaborative approaches as a whole.

The major studies have been made as follows:

{1) The Mediterrancan region studies include 8 cases
in 4 countries, i.e., Morocco, Tunisia, Portugal and Spain.

{2) In the of Middle East, 4 types of technologies,
which are fixed tilt array, 1-axis tracking, 2-axis tracking
and concentrated PV, have been examined for 17
countries: Bahrain, Cyprus, Egypt, Iran, Iraqg, Israel,
Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia,
Syria, Turkey, UAE and Yemen.

{3) In Asian region, the Gobi desert in both
Mongolian and Chinese territories, LCA models have
been formulated for cost, energy payback and CO2
emission. 2 type of arrays, fixed and one-axis, are
designed assuming m-Si, a-Si, CdTe and CIS modules.
Power transmission cost has also been estimated for the
distance of 100 km.

{4) More detailed study was made for 8 MW pilot
stage at Dunhuang in the Gansu Gobi of China. Gansu
Gobi can accept nearly 500 GW VLS-PV.
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{5) Step-by-step sustainable approach was taken to
evaluate the possibility of VLS-PV at Peremjori in
western Australian desert. Up to around 2020, 1 GW PV
aggregate will be realised gradually from multi-megawatt
scale to 200 MW annual installations approximately.

{6) Another consideration of socio-economic model
has been given for villages around the Gobi. It includes
various kinds of flows into and out of wvillages, e.g.,
energy delivery, physical distribution and money to make
the whole social system sustainable.

{7) Remote sensing technology by utilizing satellite
images has clarified actually utilisable land area on world
deserts. Sand dunes, mountains, forest and water surface
are all omitted from the surface of deserts by their nature
of morphology and spectroscopy. Only stiff and flat
lands are selected as appropriate VL.S-PV site candidates
as summarised in the table.

2 DEFINITION AND ADVANTAGES OF VLS-PV

The definition of VLS-PV may be summarized as

follows:

e The size of a VLS-PV system may range from 10
MW to 1 or several GW, consisting of one plant, or
an aggregation of plural units distributed in the same
district operating in harmony with each other.

+  The amount of electricity generated by VLS-PV can
be considered significant for people in the district,
nation or region.

* VLS-PV systems can be classified according to the
following concepts, based on their locations:

- land based (arid to semi-arid deserts);

- water based (lakes, coastal and international
waters);

- locality options: developing countries (lower-,
middle- or higher-income countries; large or small
countries) and Organisation for Economic Co-
operation and Development (OECD) countries).

« It is very easy to find land in or around deserts
appropriate for large energy production with PV
systems.

* Deserts and semi-arid lands are normally high
insolation areas.
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* The estimated potential of such areas can easily
supply the estimated world energy needs by the
middle of the 21st century.

*  When large-capacity PV installations are constructed,
step-by-step  development is possible through
utilizing the modulanty of PV systems. According to
regional energy needs, plant capacity can be
increased gradually. It is an easier approach for
developing areas.

« Even very large installations are quickly attainable in
order to meet existing energy needs.

« Remarkable contributions to the global environment
can be expected.

+ When VLS-PV is introduced to some regions, other

types of positive socio-economic impacts may be
induced, such as technology transfer to regional PV

3 MEDITERRANEAN REGION CASE STUDIES

The economic conditions for VLS-PV systems in the
Mediterranean region were examined. Originally
focusing on the Sahara Desert-bordering countries of
Morocco and Tunisia, Portugal and Spain were also
included in order to compare the impact of recently
approved PV feed-in tanffs with the less-supportive
framework environments in Northern Africa. Two sites
were selected for each country, one more affected by
marine climate influences with lower wrradiation, and one
representing a higher irradiated desert-like location.

The study was performed from a professional project
developer’s perspective by determining PV electricity
generation cost and potential revenues from electricity
sales from VLS-PV systems to customers, either to
consumers on a standard electricity price level or to grid-
operating entities on a feed-in tariff basis.

As taken from experience with already realized MW
systems, a stationary (non-tracking, flat-plate) large scale
PV installation can, to date, be realized at around 4010
Euros/kW. The value serves as a fair approximation for
the following calculations, including a limited overhead
cost of 8 %. Note that this overhead does not yet include
a further 6 to 8 % capital acquisition cost, which is
typically required if the project is sold to private or fund
investors, a frequently encountered way of project
financing at present. Three-quarters of the system cost
amounts to the PV modules, the module prices thus being
the main parameter for future cost reduction. For anmual
cost, 20 wyears’ linear depreciation and 100 % loan
financing at a 5 % interest rate serve as model parameters,
which, of course, need to be adapted for concrete project

proposals. No investment for land was considered here,
and the estimated land rental cost 1s included in the 2 %
annual operation and maintenance cost. The total anmal
cost per kW was assumed to be equal to 480 Euros/kW at
all locations.

PV clectricity generation costs in the analysed
Mediterranean countries are between 30,2 and 47,6 Euro-
cents’kWh, as shown in Table 1. As expected, the
generation cost for PV calculated 1s distinetly higher than
the price level of conventional electricity drawn from the
grid in all places. In this context, it is important to note
that the assumed 100 % loan financing makes up a
substantial proportion of the generation cost. Generation
costs below 20 Euro-cents/k'Wh result for almost all sites,
without including the financing cost and the 7 % safety
reduction in the annual energy vield. This confirms that
PV generation costs are not too far above the
conventional price line and could reach or even fall
below this line after a price decrease of PV modules,
which is already anticipated by foreseeable advances in
technology and economy of scale with increasing mass
production.

Although the lowest generation cost of 30,2
Eurocents/ kWh is reached in Quarzazate, this is not low
enough to become attractive for a buyback scheme in
Morocco, even considering that the general electrcity
price level is comparatively high there. Tunisia has a
centralized electricity industry with a low price level,
making the situation for PV even more difficult.

Morocco and Tunisia have no specific legal
framework to support PV electricity generation and no
existing feed-in tanff. Therefore, the economic feasibility
for VLS-PV 1s low in these Northern African countries if
based on achieving income from electricity sales to
consumers or on the grid alone — that is, not considering
any investment subsidies.

Portugal and Spain also have much lower prices for
conventional  electricity than the calculated PV
electricity-electricity-generation cost. In these countries,
however, smaller systems appear to be economically
feasible with the available feed-in tariffs in higher
irradiation sites. The exciting question for VLS-PV is
whether large systems can also be economically operated
under special circumstances. Answering this question
requires a closer look at the conditions in these Southern
European countries.

In summary, we expect the best conditions for
VLSPV to develop in Spain on an intermediate time
scale of 2 to 5 years, even though there are now several
larger projects proposed in Portugal. Concrete realisation

Table 1: Solar irradiation, energy yield and PV electricity-generation cost data compared with the conventional electricity
price level and local feed-in tariff rates for stationary systems at two representative sites in four Mediterranean countries

Country  Site Annual global ~ Annual energy  Generation cost for  Conventional grid  Feed-in  taniff
irradiation vield PV electricity price  rate (Euro-
(kWhm*y™)  (kWh/kWsy)  (Euro-cents/kWh) level cents’kWh)
(Euro-cents/kKWh)
Morocco  Casablanca 1772 1337 35,9 ~8-12 None
Quarzazate 2144 1589 30,2
Tunisia Tunis 1 646 1219 39,4 ~2-5 None
Gafsa 1793 1339 358
Portugal ~ Porto 1644 1312 36,6 ~12 ~55 <5 KW
Faro 1 807 1360 353 ~31-37 >5 kW
Spain Oviedo 1214 1 008 47,6 ~0 41,44 <100 kW
Almeria 1 787 1372 35,0 21,62 >100 kW
2591
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of VLS-PV projects depends upon successful negotiation
between project developers, PV and electricity industries,
and politicians with regard to acceptance, sustainability
and incentives in every single project.

4  MIDDLE EAST REGION CASE STUDIES

A top-down approach to providing solar electricity to any
given region must address the following five questions:

* How much land area is available for the harvest of
sunshine, and how much electricity could this resource
provide?

* How much electricity is required?

* What kind of technology should be used, and how
much of it would be needed for the task?

= At what rate should the technology be introduced?

* What monetary resources would be required and how
could these resources be provided?

This study provides a set of answers for the principal
electricity-consuming countries in the Middle East.

First, we studied the current electricity requirements
and land availability of all countries in the region as
shown in Table 2, with the specific aim of being able to
provide some 80 % of their total electricity needs with
solar energy within 36 years. For all of the major
electricity-producing countries, it was concluded that
land area considerations should present no obstacles to
such aims.

Second, we studied existing concentrator
photovoltaic (CPV) technology at the system component
level, considering the expected costs involved in their
mass production. These costs included the VLS-PV
plants and the necessary mass production facilities for
their manmufacture. It was concluded that, in Israel,
VLSPV plants would cost no more than US$850/kW, and
that production facilities, capable of an annual
throughput of 1,5 GW collectors and 0,5 GW storage,
would cost approximately US$1 170 million.

Third, we studied the kind of investment that would
be necessary to create a production facility in four years,
the first VLS-PV during the fifth year, and one
successive new VLS-PV plant every year thereafier.

Assuming an open credit line being made available
by the government (or investors) at a 3 % real rate of
interest, it was concluded that, in the Isracli case as
shown in Table 3:

* the credit line would reach its maximum value in the
13th year;

* the maximum required credit would be equal to the

cost of approximately ten fossil-fuelled plants;

the credit-line plus interest would be fully paid off by

electricity revenues after 21 years;

* by that time, revenues would be sufficiently high to
enable both the continued anmual production of VLS-
PV plants with no further investment, and the
decommissioming and replacement of old plants after
30 years of service.

It is important to point out that after the initial
investment has been paid off, the price of electricity no
longer depends upon any factors related to its generation.
It becomes a purely arbitrary figure that can be fixed at
any desired level. For our examples, we arbitrarily fixed
it at 5,5 US cents’kWh. However, if it is deemed
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desirable to continue installing VLS-PV plants at the rate
of one per year, then the price of electricity can be
lowered to a figure enabling the annual net revenue from
sales to precisely cover the cost of one new VLS-PV
plant.

Similarly, if it becomes necessary to replace old
plants after 30 years of service, it 1s sufficient to fix the
clectricity price during the 29th year at a level covering
the cost of constructing two new VLS-PV plants the
following year, etc. Simple arithmetic shows that in both
of these examples, the required electricity price will be
less than the 9 US cents/kWh that we have adopted for
our calculations.

Table 3 Expected economic benefits to Israel of VLS-PV
plant introduction during the first 36 years

Interest rate 3 % y—1
Yearly added solar power 1.5 GW

Yearly added six-hour 0.5 GW

storage power

Credit line capacity required 0781  US$ million
for the entire project

Interest paid 3397  US$ million
Loan repaid after 21 years

Total solar power installed 46,5 GW

Total storage power installed 155 GW
Electricity price after five 9 us

vears, when solar electricity cents/kWh
sales start

Electricity price after 22 5.5 us

vears, when all debts are paid cents/k'Wh
off

Land area required for 558 ke
installation

Fraction of total national land 2.7 %
area

Yearly manpower 4500  jobs
requirements for solar

production

Yearly manpower 11 jobs
requirements for solar 625
operation

Yearly manpower 1 500  jobs
requirements for storage

production

Yearly manpower 3875 jobs
requirements for storage

operation

Headquarters and 1395  jobs
engineering

Total number of jobs after 36 22 jobs
years 895

In the fourth part of this study, we repeated the Israeli
calculations for the other major electricity producers in
the region, making certain simplifying assumptions that
were specified in each case. Given uncertainties yield
electricity at costs fully competitive with fossil fuel.
Second, one may think in terms of typically 80 % of a
country’s entire electricity requirements coming from
solar energy within a period of 30 to 40 years.

Third, VLS-PV plants turn out to be triply renewable.
In addition to the normal sense in which solar is deemed
to be a renewable energy, the revenues from this
topdown approach would be sufficient to completely
finance the continued annual construction of VLS-PV
plants and the replacement of 30-year-old VL S-PV plants
with new ones without the need for any further
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Table 4 Proposed projects for VLS-PV development in Mongolia

Location Capacity Demands
First stage: Sainshand Households and public welfare
Ré&D/pilot phase {significant level compared to the
peak demand and electricity usage in
Sainshand city)
Second stage: Four sites along the railway: 10 MWisite Industry
demonstration phase 1 Sainshand (total: 40 MW) {surpasses the peak demand and
2 Zumiin Uud almost equivalent to electricity usage
3 Choir around these locations)
4 Bor-Undur
Third stage: Five sites along the railway: 100 MW/site Power supply
deployment phase 1 Sainshand (sub-total: 500 MW) {almost double the peak demand and
2 Zumiin Uud and 500 MW significant level compared to
3 Choir (total: 1 GW) electricity usage in Mongolia)
4 Bor-Undur
5 Mandalgobi
One site between Oyu-Tolgol
and Tsagaansuvrage

investment, surrounding local electricity prices, labour
costs, and production/consumption growth rates, our
results for these countries should be regarded as
indicative rather than definitive.

5 VLS-PV PROJECT ON THE GOBI DESERT

5.1 Demonstrative Research Project for VLS-PV in the
Gobi Desert of Mongolia

Mongolia has the vast Gobi Desert area in the
southern and south-east parts. There are two types of
electricity users in Mongolia, nomadic families and users
of the electricity network. While electrification using PV
for nomadic families has occurred, an existing electricity
network supports Mongolian economic activity.

The electricity networks (transmission lines) have

been constructed only in specific regions, such as those
centring on Ulaanbaatar, the capital of Mongolia. The
transmission lines have basically been constructed along
a railway connecting Atlanbulug with Zumiin Uud
through Ulaanbaatar — the borders in the north and south-
east. The railway is playing a very important role in
Mongolian economic activity. Therefore, these areas
along the railway and transmission lines are expected to
further develop in the fiture. However, electricity for the
areas is generated by coal at Ulaanbaatar, worsening the
atmospheric environment around Ulaanbaatar. As a result,
installing large scale carbon-free renewable electricity
such as the VLS-PV system may contribute both to
protecting against air pollution and supporting regional
development.
The VLS-PV scheme is a project that has not been
carried out before. In order to achieve VLS-PV, a
sustainable development scheme will be required. There
are many technical and non-technical aspects that should
be considered. Therefore, we will propose a
demonstrative tesearch project in the areas along the
railway and discuss a future possibility for VLS-PV in
the Gobi Desert, in Mongolia. The proposed project will
include three phases as follows (see Table 4). The
potential sites in the Gobi Desert area along the railway
were 1dentified wusing long-term  meteorological
observation data conducted over the last 30 years. Grid
access, as well as favourable market, economic, climatic
and weather conditions, prevail in southern Mongolia —
hence the choice of the candidate sites for the
development of the VLS-PV system in the Gobi.

It is expected that the first phase will take four to five
vears. The project site will be Sainshand and the capacity
of the PV system will be | MW, The assumed demands
are households and public welfare needs in the region.
The project has benefits beyond electricity.

Apart from the creation of jobs and employment, the
tourism industry will also benefit. In the second phase,
10 MW PV systems will be installed in Sainshand,
Zumiin Uud, Choir and Bor-Undur, where they are
located along the railway lines. These sites are important
cities and the scale is classified as medium-large scale in
Mongolia. The total capacity of PV systems installed will
reach 40 MW, and the demands assumed are to supply
industry sectors, such as mmming, located in the sites’
neighbourhoods. The project will then be shifted to the
third phase, which is the deployment phase. In this stage,
10 MW PV systems will be enhanced to 100 MW VLS-
PV systems, and one new 100 MW system will be
constructed in Mandalgobi.

Besides these 100 MW VLS-PV systems, another
500 MW VLS-PV system will be constructed in between
Ovu Tolgoi and Tsagaansuvraga, which are located in
Umnugobi and Dornogobi provinces.

Renewable energy development is a promising way
for social development and is one of the most impertant
policies in Mongolia. Two documents, the Law for the
Promotion of Renewable Energy and a proposal for a
Utilization and National Renewable Energy Programme,
have recently been drafted and submitted to the
government for the approval of parliament. Final
approval of these two documents will positively affect
taxes and other funding that will assist in the
development of VLS-PV systems.

4.2 Feasibility Study on 8 MW Large Scale PV System
in Dunhuang, China

Energy shortages and environmental pollution have
become the bottleneck of social and economic
development in China. Improving the current structure of
energy supply and promoting utilization of renewable
energy are effective solutions for these problems. The
photovoltaic power generation system involves clean
energy without greenhouse gas emissions. In China, there
are huge lands in the Gobi Desert and elsewhere that
provide the possibility of large scale PV systems on very
large scale applications. Only when PV is used for large
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scale applications can costs be reduced to the level of
those associated with traditional electric power.

The Gobi area in Gansu is about 18 000 km2. This
area can be used to build 500 GW VLS-PV, which i1s
more than the whole power capacity in China today. The
targeted place for 8 MW large scale photovoltaic power
generation (LS-PV) in the Gobi Desert is at Qiliying, 13
km from Dunhuang city. The latitude 1s N-40° 39°, with a
longitude of E-94° 31” and an elevation 1 200 m. It is
only 5 km from Qiliying to the 6000 kVA/35 kV
transformer station, so it will be not cost that much to
build a high voltage transmission line.

The 8 MW PV system will be divided into eight

LY UQMLIVIIE 12 LWL LV 2¥ LWL UN{MLPILIVILL  2UVIL W) LY

modules, inverters and transformers, as shown in Table 5.
However, it is expected that 96,74 million yuan (30 % of
the total capital) will be a grant provided by the central
government of China, and the real required capital will
be 225,73 million yuan. The Gansu grid company will
guarantee 1,683 yuan/kWh as the feed-in tariff and the
annual income for the PV system will be 23,16 million
yuan: 13,761 MWh/year x 1,683 yuan/kWh. The tariff
purchased by the grid company will be added on to all
the electricity consumed in Gansu Province and the
electricity consumption in Gansu Province was 340 x 10%
kWh in 2002. Therefore, the additional tariff will be
0,006 8 yuan/kWh: 23,16 million yuan/340 x 10¥ kWh.
For a family consuming 2 kWh/day, the annual
consumption will be 730 kWh, and they will only need to
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pay 5 yuan/year in addition.

The proposed 8 MW LS-PV plant in Dunhuang city
is considered the first pilot project in China with the
Great Desert Solar PV Programme proposed by the
World Wide Fund for Nature (WWF) and an expert
group. The development of further large scale PV
systems in other regions is also bemng discussed. It has
been proposed that 30 GW of solar PV power generation
capacity could be developed by 2020 if government
incentive policies are developed and are in place. This
could enable China to become a leading country in solar
power development in the world.

years.

The size of a VLS-PV system may range from 10
MW (pilot) to 1 or several GW (commercial), consisting
of one plant or an aggregation of a number of units,
distributed in the same region and operating in harmony
with one another. Figure 1 gives a rough idea how a
VLS-PV project can be realized in a circular distance of
100 km of Perenjori over the next 15 years, aggregating
to a capacity of over 1 GW.

What will be feasible is to install several stand-alone
solar PV systems as per the load requirement of each
individual mining operation in the region. Then, when
three to four projects have been set up in the region, they
can be interconnected by creating a small local grid.
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Table 6 Estimated project cost for 10 MW PV power
generating system (Aus$l = approximately US$0.76)

Components Unit cost Total cost (AusS)
PV modules 4.4 Aus$'W 44 000 000
Mounting structure 10 % of 4400000
with single-axis modules

tracking

Inverter(s) 125 000 5 000 000
Transformers and 4 % of modules 1 760 000
cabling

Installation and 7% of modules 3 080 000
commissioning

Land Lump sum 300 000
Miscellaneous, Lump sum 1 260 000
including

transportation to site

Total 60 000 000

A project for installing a 10 MW pilot power
generation system will be proposed as the first step for a
VLS-PV system at Perenjori. The estimated project cost
of a 10 MW PV power generation project at Perenjori
will be of the order of Aus$60 million, with the
following cost breakdowns as shown in Table 6. Almost
70 % of the project cost comprises PV modules only. The
generation cost of the pilot project of 10 MW, after
availing of a 50 % subsidy from the government, will be
approximately 14 Australian cents’kWh under the
Mandatory Renewable FEnergy Target (MRET) of the
federal government of Australia, which is very much

companies would be interested in purchasing power from
the proposed pilot project of 10 MW, and the installation
of a diesel-based power project as a backup has been
suggested.

Prior to setting up the pilot project, arrangements
must be made by the project developers to sell the power
to the mining operators. The power purchase agreements
(PPAs) should be signed for the whole lifetime of the
project. The Shire of Perenjori and Mid West
Development Commission would play an important role
in negotiating the terms and conditions of the PPAs, and
their assistance would be necessary to attract project
developers for this project, as well as for other projects to
be installed later on.

7 DESERT COMMUNITY DEVELOPMENT

A region, where the VLS-PV is introduced, should
also be sustainable as well in sociceconomic issues. By
the Phase 1 studies [1], sustainable scenario was
developed in order to maintain sustainable cconormical
effects to the regional society year by vear by
introducing local PV module assembly factory lines and
by supplying most of modules to VLS-PV constantly
every year. This approach assures local job creation and
income by purchasing electricity. Some part of electricity
can be also utilised for agricultural development in the
desert area. Especially, the presence of electricity in
agricultural ficld seems to be a new kind of meotif and
this appreach can provide useful means for agricultural
people, for instance, in order to avoid soil property
deterioration caused by carcless irrigation.
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has been discussed and a fundamental structure has been
formulated in terms of a specific village in the
Mongolian Gobi by considering the following items:

»  Sustainable energy production by sustainable PV
stations. Here, the VLS-PV system is the main feature.
Other renewable energy source can also be utilised such
as wind, biomass, etc.. Battery storage 1s essential for

service during night.

o Sustainable farming. Utilising soil and  water
conservation technology, we will conserve and
rehabilitate the environment of a desert area. This may

be relatively easy to achieve with PV support.

technology needed.

required for sustainable agricultural production.

irrigation water.

system may save groundwater quality, and desalination
equipment protects soil from damage due
salinisation. Considerable amounts of low saline water
will be available when PV system can drive a
desalination system, such as reverse osmosis (RO} or
electro-dialysis (ED). Figure 3 shows an example of a

drip irrigation system with a desalination system.
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Sustainable  community. Statistical and scenario
analyses are used to develop an ideal community. Tn
order to sustain regional society, education and training
are also considered in addition to the facilities and

Remote sensing. It can be utilised find out suitable
places where to mplement VL.S-PV and wind power
systems. It can also bring data on soil and water

Desalination. PV power can drive a desalination plant,
which will supply enough amount of drinking and

Effect of PV station on local agriculture. Proper
operation of a water pump and desalination system can
remove salt from the groundwater to provide good
quality water. This can enhance crop yields and reduce
the use of fuel wood PV-driven greenhouse can
produce agriculture product of high quality and yields.
Effect of PV station on the local community. PV
stations including a local module factory can create

8§ CONCLUSIONS

It 1s strongly indicated that VLS-PV could directly
compete with fossil fuel as the principal source of
electricity and with existing technology for any country
that has desert areas. This could be accomplished by
finding an investment scheme and by getting nstitutional
and organizational support for its implementation. The
proposals developed in this study may motivate expected
stakeholders to realize VL.S-PV project in the near future.
Moreover, a series of these practical project proposals
from different viewpoints and directions will enable us to
provide essential knowledge or detailed practical
instructions in order to realize the sustainable
implementation of VLS-PV development in the future.
¢+ Discuss and evaluate future technical options for VLS-
PV, including electricity network, storage and grid

management issues, as well as global renewable
energy systems.
Analyse local, regional and global environmental and
socio-economic effects induced by VLS-PV systems
from the viewpoint of the whole life cycle.
Clarify critical success factors for VLS-PV projects, on
both technical and non-technical aspects, based on
experts” experiences in the field of PV and large scale
renewable technology, including industry, project
developers, investors and policy-makers.
Develop available financial, institutional and
organizational scenarios, and general instruction for
practical project proposals to realize VL S-PV systems.
The International Energy Agency (IEA) PVPS
community will continue Task 8 activities. Experts

[1] Kosuke Kurokawa, Energy from the Desert, James &
James Ltd., London, 2003.

[2] Keiichi Komoto, Peter van der Vleuten, David
Faiman and Kosuke Kurokawa, Energy from the
Desert: Practical Proposals for Very Large Scale
Photovoltaic Systems (to be published by James &
James Ltd., London, 2006).
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PERFORMANCE ANALYSES OF BATTERY INTEGRATED GRID-CONNECTED RESIDENTIAL PV SYSTEMS
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Masaharu Yoketa®, Hiroyuki Sugihara®, Atsushi Morimoto*
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ABSTRACT: Grid commected PV systems will feed electric power to the power distribution network. Voltage at the
comnecting point to the grid will become higher along with the reverse power flow increasing. PCS output power is
restricted by the grid voltage so the significant amount of the possible energy output will be lost if the grid voltage is
too high. To avoid this output energy loss due to the high grid voltage, battery integrated PV systems are developed
in the “Demonstrative research on clustered PV systems.” More than 550 residential PV systems are installed in the
demonstrative research area. Annual performance analysis results of commercial PV systems without battery and
battery integrated systems are summarized in this paper. Varnation of the output energy loss due to the grid voltage is
observed in commercial PV systems due to the difference of the regulating method. Approximately 8% of additional
performance loss is observed in battery integrated PV systems. Active power regulations due to the high grid voltage

are successfully avoided in some cases.
Keywords: Grid-Connected, PV System, Performance

1 INTRODUCTION

Grid connected-residential photovoltaic (PV) systems
such as roof mounted PV systems feed electric power to
the power distribution line. Since radial power
distribution system is designed for a power flow from the
high voltage (HV) side to the low voltage (LV) side,
reverse power flow from the end of LV side may cause
voltage rise of LV line. [1](see Figure 1) To prevent the
over voltage of the power distribution line, Japanese PV
system’s power conditioning subsystems (PCS) have a
function to regulate output power when the voltage of the
grid 18 too high. Because of this function, significant
amount of electric power will be lost. [2]

“Demonstrative research on clustered PV systems™ is
being conducted from December, 2002 by NEDO to
investigate about the voltage problem and other potential
issues of grid-connected PV systems. Approximately 550
PV systems are installed on the roofs of houses and
comected to the commercial power grid in the
demonstrative research area in Oota, Japan. A total of
nominal system power is more than 2[MW] and all the
systems are comnected to the same power distribution
network. [3]
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Figure 1: Voltage rising of power distribution line

2580

2 BATTERY INTEGRATED PV SYSTEMS

2.1 Overview of battery integrated PV system

To mimmize the output energy loss due to the high
grid voltage and maintain the power quality of the grid,
battery integrated PV systems are developed in the
demonstrative research. Lead acid battery with a capacity
of 49 [Ah] for single cell are used for the systems, 96
cells are series connected and installed in the outdoor
storage box for each PV systems. Two types of charge
controller are developed in the demonstrative research.
One is the unified PCS for PV and battery and the other
is the additional charge controller for commercial PV
systems. Installation of the unified PCS is started from
Janmary, 2005. Additional charge controllers for the
installed commercial PV systems are started in a year
later.

2.2 Unified PCS for PV and battery

The unified PCS is composed of a DC/DC booster,
DC/DC charge controller and DC/AC inverter. Figure 2
shows a schematic view of the battery integrated PV
system with the unified PCS.

Only the power from the PV array will be charged to
the battery, the charged power will be used in the in-
house load. Unified PCS monitors a power flow at the
connecting point, more than 150[W] of forward power
flow are required for discharging in order to prevent the
reverse power flow from the battery to the grid.

PV array PCS
A ;
Grid
CJ

=

Lead acid

In-house
load
battery

Figure 2: Schematic view of the battery integrated PV
system with the unified PCS
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3 ANALYSIS METHOD

One-minute averages of secondly measured data are
used for the analysis. System yield [kWh/AW] and
performance ratio are employed for the overall system
performance analysis. In addition to these indexes,
detailed loss analyses are performed to clarify the benefit
of the battery integration.

Deployed PV  systems performance is highly
depending on the various loss factors, i.e. temperature,
shading, array configuration, grid voltage and so on.
Expected output power which would be generated in the
normal grid voltage condition and lost energy under the
high voltage condition need to be quantified in order to
quantify the energy which is saved by the battery. Some
of the losses occur exclusively but some of them occur
simultaneously, the following loss factors are considered
and separately quantified in this paper.

1. Shading
Regular loss (Soil, Degradation, Array config.)
Incident Angle / Reflection
Module Temperature
Output restriction (over voltage)

PCS capacity shortage

MPP mismatch (high voltage side)
DC resistance

. Inverter

0. PCS Off / PCS Standby

1. Fluctuation

i~ I AR O ol

Input energy of the PV systems is irradiation.
Irradiation is measured at the meteorological stations
using pyranometer in this research. Shading, soil,
degradation and incident angle are treated as factors to
reduce the input irradiation of the PV array. Received
irradiation will be used for the photovoltaic energy
conversion. Module temperature, operation point on the
-V curve and array configuration are treated as factors to
change the conversion efficiency of the PV array. Grid
voltage, PCS capacity and MPP mismatch are considered
as factors to determine the operation point on the I-V
curve of the PV array.

Loss due to the incident angle and DC circuit
resistance are calculated using theoretical model. [4][5]
Loss due to the module temperature and inverter are
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battery for battery integrated systems. As a result, fed
power is less than half of the non battery integrated
systems.
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Figure 3: Reference yield, system yield, fed power and
performance ratio for commercial and battery integrated
PV systems

4.2 Annual system performance

Annual system performance and loss analysis results
of commercial PV systems and those of battery
integrated PV systems are shown in Figures 4 and 5
respectively. Data collected from March, 2005 to
February, 2006 are used in these results. Numbers of PV
systems used in these graphs are gradually increased
during the evaluation period, numbers of commercial
(non battery integrated) PV systems in March, 2005 are
134 and 140 in February, 2006. On the other hand,
numbers of battery integrated PV systems are 19 in
March and 197 in February. Both energy losses at the
inverter and charge controller are included in a loss due
to the unified PCS. Additional energy consumption of the
measurement system and control system are also
included.

Looking at the results, all the loss factors showed
almost the same values and seasonal trend except the loss
due to the battery and PCS. Since commercial PCS and
unified PCS have almost the same DC/AC conversion
efficiency, 4.7% of the expected energy can be assumed
as a loss at the charge controller of unified PCS and other
additional losses. 3.3% of the expected power is also lost
in the battery itself so that the total performance ratio is
around 8% lower in the battery integrated systems.



4.3 LLOSS aue 1o The grid voltage

The voltage at the power distribution line needs to be
controlled within 101V +- 6V or 202V +- 20V in Japan.
Flowing current and line impedance are two major
factors to determine the voltage at the connecting point.
If the sending voltage of the transformer substation and
tap positions are the same but different current in the
same line impedance, more current cause more voltage
drop in forward power flow case but results voltage
increasing in reverse power flow case at the end of L'V
line. Thus reducing the feeding power to the grid is
necessary to avoid the over voltage for the distributed
generator such as grid connected PV systems. Battery
integration is one of the options for PV systems to
minimize the risk of over voltage without sacrificing the
output energy by mean of storing the electricity in the
battery.

So far, energy loss due to the grid voltage is not so
severe even in the non battery integrated PV systems.
Percentage of the loss due to the grid voltage is less than
1% in annual average as shown in Figure 4. This is
probably because of the good voltage control of the
power grid. However, there are a few systems which tend
to have more energy loss due to the grid voltage and
amount of lost energy is sometimes more than 50% of the
expected energy out. Figure 6 shows analysis result of
the loss due to the grid voltage for commercial PV
systems. Each data point represents the daily loss of one
system and more than 3000 data are plotted in each
month. Although most of the data are on the 0% line,
some of the systems result significant energy loss on
particular days. Most of these bad days are weekends and
clear sunny days as shown in Figure 7. The results
suggest that the reduced load (reducing forward current)
in the power distribution network in weekends and more
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Figure 7: Loss ratios due to the grid voltage as a
function of the day of the week and daily expected output
power

Another factor to differentiate the amount of energy
loss due to the grid voltage among the systems is the
starting voltage of output regulation. Examples of the
regulation methods, starting voltage and regulating speed
are summarized in Table 1. Phase advance reactive
power control will shift the phase of current and change
the power factor between 1 and 0.85, active power
control will regulate the output current in order to reduce
the output power by shifting the operation point from
MPP to the open circuit voltage. Since PCS is not
monitoring the voltage at the connecting point but its
own output terminal voltage and there is a voltage drop
between PCS output terminal and connecting point due to
the resistance of the drop wire, voltage at the connecting
point might be lower than that at the PCS output terminal.
Thus PCS may not need to start the regulation from 107V
but can start from slightly higher voltage. This 1s one of
the reasons why starting voltages of output regulation are
not exactly the same among all the PCS. However, it is
pointed out that this kind of variation may cause the
concentration of output restriction in particular PCS so
this variation should be minimized. [8]

N
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PCS Types Starting Voltage

Speed

Reactive power

control

1 112V PF=1 10 0.85 in 2.5sec

2 None None

3 None None

4 107V PF=1 10 0.85 in 10sec
Active power control (Regulation)

1 Afier PF reached 2A/sec, 100% to 0%—=10sec

0.85

2 107V 43mA/4sec

3 109V Immediately 0%

4 109V 100% to 0% in 4 to 10sec

Table 1: Examples of output regulation method
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high grid voltage. PCS output voltagel and 2 are
measured voltage at the single-phase three-wire PCS
output terminals. Starting voltage of the active power
regulation for system #1°s PCS is around 107.5[V]. On
the other hand, that of system #2’s is around 109[V] and
110[V] for system #3’s PCS. As a result, around 69% of
the expected power was lost due to the high grid voltage
in system #1 while system #2 lost around 15% and no
loss was observed in system #3. PCS output terminal
voltages of system #3 are slightly higher than those of
the others because #3 has more reverse power flow to the
grid. However, this result does not mean that system #3
was in over voltage condition because these voltages are
not the voltages at the connecting point.

4.4 Effect of battery

Battery can be used as an output restriction
avoidance system in grid connected PV systems.
Charging battery with generated electricity can minimize



1o AUt wiv by Ui W WY & e 4 sy sseng v
appropriately operated, battery integrated PV system can
avoid the output energy loss under the high grid voltage
situation. However, battery integration results additional
energy loss due to the charge controller and battery,
saved energy should be larger than the additional loss in
order to maximize the merit of PV system user. Amount
of saved energy will be affected by the grid condition
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THE STATUS REPORT OF THE PV SYSTEM
REAM INTER-CONNECTED GUIDELINE IN 5 COUNTRIES OF ASIA

Hironcbu Igarashi1 and Hiroyoshi Tasai’ Kousuke Kurokawa®
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The investigation about the status of the PV standards such as industrial standards for equipment of PV system,
certification of equipment, regulations (guideline) of grid connection in China, Korea, Taiwan, Thailand and Malaysia.

The Renewable Energy Law was effective from January 1st in 2006. Renewable Energy such as PV, Wind, Hydro
attracts attention. There are expected spreader installations. There are making original standards for PV in china. They
are introduction of Japanese Standards and Certification program in other to be export to Japanese market for their
equipments. The stage of PV market is aggressive installation period in Korea and Taiwan. The person, who is expert in
PV, makes a planning to install of PV by National Projects in Thailand and Malaysia.

Keywords: PV system, certification of PV system, PV standards, regulations, guideline, Asia

FOREWORD
General

The introduction of Asian major power's including
Japan PV system is active now. As for Japan, the
standard and the guideline are maintained for the
operation of the PV system. It is thought that the thing to
investigate the PV operation of another country is very
advantageous information when Japan of the future
approaches ancther country. The investigation about the
status of the PV standards such as industrial standards
for equipment of PV system, certification of equipment,
regulations (guideline) of grid connection in China, Korea,
Taiwan, Thailand and Malaysia.

The following turned out by the investigation that we
had executed. The Renewable Energy Law was effective
from January 1stin 2006. Renewable Energy such as PV,
Wind, and Hydro attracts attention. There are expected
spreader installations. There are making original
standards for PV. Korea and Taiwan are introduction of
Japanese Standards and Certification program in other
to be export to Japanese market for their equipments.
The stage of PV market is aggressive installation period.
Korea, and Taiwan are introduction of Japanese
Standards and Certification program in other to be export
to Japanese market for their equipments. The stage of
PV market is aggressive installation period.

This study is part of the Investigation concerning
maintenance situation of standard etc. related to PV in
cooperation base business China, South Korea, Taiwan,
Thailand, and Malaysia like measures business of
international energy use rationalization etc. international
energy consumption efficiency improvement etc. etc..”
project we conducted under contract to the New Energy
and Industrial Technology Development Organization
(NEDQ).
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MAINTENANCE SITUATION OF STANDARD IN EACH
COUNTRY

National standardization conservancy Standardiza-
tion Administration of China has jurisdiction, and
standards in China are maintained as People's Republic
of China national standard (GB). China has the standard
of 39. China is quoting the IEC standard as a standard in
the country. A lot of standards are the one of the
characteristic of the solar sells. However, the equipment
such as PV systems and the power conditioners is not
standardized.

KS: Korean Industrial Standards that is the national
standard of Korea is what a technological standard
academy of the Korea industrial resource part enacts it.
Atechnological standard academy of the Korea industrial
resource part and a Korea standard society can retrieve
standards of Korea from the managed site. Korea is
quoting an IEC standard and Japanese JIS standard as
a standard in the country. Korea was a country where
standardization and the attestation system were
maintained most in five countries that had been
investigated this time.

CNS:Chinese National Standards that is the national
standard of Taiwan is what Bureau of Standards,
Metrology and Inspection (BSMI) enacts it. Taiwan has
the standard of 10.

It investigated in Department of Alternative DEDE:
Energy Development and Efficiency and NSTDA:
National Science and Technology Development Agency.
If the standard that relates to the solar battery in a Thai
country conforms to the standard of IEC, it is a current
state in the problem inh a domestic procedure it not is.
Moreover, it is expected for original standards to he
made by groups of Wattanapong Ratkwichian professors
of the Dr. Porponth Sichanugrist and Naresuan
University of the science and technology ministry, and to
be promulgated from TISI: Thailand Industrial Standard
Institute though a detailed content is uncertain.
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It conforms from the result of the survey in PTM:
Pusat Tenaga Malaysia and UKM: University
Kebangsaan Malaysia to the standard of IEC about the
standard related to the solar bsells in a Thai similar
country in Malaysia, and it is a current state in the
problem in a domestic procedure it not is. The business
that sets up the photovoltaic generation system in the
roof top type for the house is begun as a national project
of Malaysia according to the Malaysian energy center in
fiscal year 2006. | hear that the standard by which a
ream system requirement to the low-pressure supply of
electric power system was recorded referring to the
standard of IEC was enacted as MS1837 along with this.

ABOUT THE CERTIFICATION SYSTEM RELATED TO
PV SYSTEM THAT EACH COUNTRY

In China and Thailand and Malaysia, there was no
certification  system concerning the photovoltaic
generation system.

The authentication system of the power conditioner
in Korea quotes the system that JET of Japan executes
and has gone. Moreover, the attestation examination
standard also similarly used the same one as Japan, and
part had been changed to a demand regulated in Korea.
Korea is executing the test of the power conditioner with
Korea Institute of Energy Research: KIER and Korea
Testing Laboratory: KTL. The investigation of the factory
that manufactures the equipment is a system where the
attestation of the equipment can be taken after Korea
Energy Management Cooperation: KEMCO executes,
and the examination result of the power conditioner and
the examination result of the factory pass.

In Taiwan, there were neither solar modules nor an
certification system concerning the PV inverter. The
subsidy is delivered to those who set it up about the
photovoltaic generation system as a government's
position now. Therefore, a positive introduction of the
Grid connects type photovoltaic generation system will
be expected in the future. t is thought that the attestation
system will be needed from such a background in the
future.

ABOUT THE STANDARD CONCERNING THE
PHOTOVOLTAIC GENERATION SYSTEM
INSTALLATION

There were no standards of the photovoltaic
generation system in China when constructing it the
design. However, many books that relate to the design
and the construction, etc. of the photovoltaic generation
system are published in 2005 The case with the
photovoltaic generation is introduced to these books
besides the principle of the solar battery, the inverter, and
the storage battery is technically recorded, and the view
will be described in the future. Moreover, there is a
description  concerning the independent type
photovoltaic generation system, and the capacity of the
storage battery is selected and the number of sheets of
the solar battery module is calculated about the design
approach. Neither the design nor the economy of the
Grid connect type photovoltaic generation system are
discussed.

| hear that the application permission was necessary
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to confirm the bearing force in the building when
standards made an express statement were not found
when the photovoltaic generation system is designed,
and constructed, and photovoltaic generation system
was set up from the rooftop side in the rooftop in the
building as a law in the country by the height of 1.5m or
more.

There were no standards of the photovoltaic
generation system when designing, and constructing it in
Korea and Thailand.

There were no standards of the photovoltaic
generation system when designing, and constructing it in
Korea and Thailand and Malaysia.

CURRENT STATE OF GRID CONNECT GUIDELINE

China is recorded to enact the standard of a Grid
connect guideline and a technological requirement, and
to promulgate it in "People's Republic of China
acceptable reproduction Nou source method" of the
renewable energy method enforced about the guideline
that lies a Grid connect in the power generation field by
renewable energy on January 1, 2006, so-called Article
1,

Korea Electric Power Company. KEPCO issued
"Decentralized power supply of electric power Grid
connect technological standard” to the guideline related
to the Grid connect system in Korea in 2005. It follows
Korea Electric Power Corporation's standard though this
is a technological standard concerning all of not only the
photovoltaic generation but also the decentralized power
supply of electric power Grid connects of the
cogeneration and other renewable energy power
generations, etc. and no national standard.

The technological standard related to the Grid
connects system of Taiwan is "Cogeneration Grid
connect technological points." intended for the general
cogeneration power generation that the government
enacted in 1989(the fourth revision in 1999). Moreover,
"Taiwanese electric power company renewable energy
power generation Grid connect technological points" was
promulgated as a technological standard to the
renewable energy power generation by Taiwanese
Economic Department in 2002. The revision work to add
a more concrete standard is proceeded, and
"Photovoltaic generation Grid connect type inverter Grid
connect technological standard" is expected to be
enacted as a technological standard of the inverter now.

A technological requirement for ream system is
provided and Thailand executed to the system of
dynamo of the power generation output 1MW or less.
MEA: Metropolitan Electricity Authority from May, 2002
and PEA: Provincial Electricity Authority.

A Malaysian government made the start in May,
2001 to SREP: Small Renewable Energy Power
Programme: SREP public. It is being advanced by the
government so that SREP may promote the use of
renewable energy in the power generation field. The
dynamo in this program should confer directly with the
electric power company where Grid connects and the
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contractor relate in the supply of electric power system.
SUMMARY

The photovoltaic generation industry might be
immature, Korea was excluded, and the attestation
system was not maintained.

However, the contribution of our country for the
establishment of the solar sells market is possible in the
future by increasing the chance to introduce the system
of Japan to the object country and the region from the
viewpoint etc. of the simplification of the ream system
conference on the quality securing of the composition
equipment and the electric power company because of
the expectation of the spread of the photovoltaic sells,
and sharing the finding in these regions.

Concretely, the symposium and the lecture meeting
are held for an electrical engineering laboratory (China),
Taiwanese Agency of Industrial Science and Technology
(Taiwan), the science and technology ministry, the
alternative energy development efficiency improvement
bureau (Thailand), and the energy commission and the
energy centers (Malaysia). It is thought that it is
possible to contribute to the spread of the photovoltaic
generation technology including the attestation system
by sharing information.

There is a project for the roof top PV systems for
house in Malaysia. The future can be expected that the
introduction number of Grid connect photovoltaic
generation systems increases. When the PV system is
set up, inefficiency needing the attendance of the electric
power company whenever setting it up, and the
execution of the test of various of relay on the site.
Therefore, it is thought that it maintains and it is
introducing necessary of the inverter attestation system.

Thus, maintenance and smooth operation of inside
and these attestation systems from which the Grid
connect type photovoltaic generation system is expected
to be introduced by centering on the naticnal policy
become keys to the introduction of the photovoltaic
generation system of a private base and the spread..
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ABOUT THE EXAMINATION OF AN ALTERNATIVE TECHNIQUE
OF THE MOTOR LOAD ACCORDING TO THE RESONANCE LOAD
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The islanding phenomenon is generated by the load with the resurrection energy. The kind of the resurrection load
has the resonance load and the motor load, etc. It turns out that the load that generates a Iot of islanding phenomena is a
motor load in those a lot of kinds of loads from our experiment result. To confirm we were loads where the characteristic of
the motor load being able to generate the islanding phenomenon most in this experiments, the characteristic of the motor
load was replaced with a linear load and it verified it to a linear load like the resonance load. Moreover, it was assumed
that the inductivity load characteristic of the motor load was substituted and it matched and it examined it.

Keywords: Islanding, islanding phenomenon, motor load, resonance load

FOREWORD
General

Recently, the concern for global environmental
concerns such as global warming has spread between
general people.

Therefore, the photovoltaic generation system for
the house is paid to attention as a clean energy source
from which CQO; is not exhausted to the power generation
of the electric power. The Grid connect type is most
popular photovoltaic generation system.

The Grid connect system is a system that can do the
selling of electricity to a power company of the remainder
of the electric power used at the power generation
electric power and home to the general electric utility. It
is necessary to set up the islanding detection device to
the selling of electricity to a power company situation the
general electric utility of the electric power in which
electricity is generated in the photovoltaic generation
system. Because it is necessary to detect the power
failure due to the accident that occurs in the power line in
the electric power company, to stop the power
generation of the photovoltaic generation system, and to
prevent the electric shock.

However, it is rugged and it might be difficult to
detect the power failure of the electric power company
the islanding detection device by the influence of the
load with the resurrection energy.

Authors were confirmed the motor load was
generated of the state of the islanding from the
resonance load and verified whether to obtain the
comparable result when the inductivity load of a linear
load substituted!”’ and the motor load this time.

STUDY OF RESONANCE LOAD AND MOTOR LOAD

Resonance load by IEC standard

302

The resonance load by the IEC standard is a
resonance load in which an inductivity load, a capacitive
load, and the resistance load are connected in parallel.
The size of the inductivity load of the resonance load is
requested by the expression (1). Moreover, a capacitive
load equal with the inductivity load is prepared. To
consume the active power that the power conditioner
outputs, the same resistance load as the declared power
is connected. Therefore, amount PgL of the inductivity
load becomes 2.6kVar obtained from the expression (1).

PgL :QfXPEUT

: inductive load [VARL]

m

Pq
Peut : Rated power of power conditioner

Q :0.65

Comparative study of resonance load and motor
load

The rescnance load and the motor load have a
regenerative energy. The islanding detection device
generates the islanding phenomenon by the influence of
the energy discharged from the resurrection load.
Therefore, it is necessary to clarify the energy of the
resonance load and the motor load. Moreover, it is
necessary to measure the load it with the same amount
of the resurrection energy to prove the influence of the
regenerative energy given to the islanding detection
device and to prove. Therefore, the energy discharge
time was measured by the following methods by using
the circuit chart shown in Fig. 1 and 2.

1. Parallel resistance load (R) is increased from 0 to
4000W at the time of each carving 100W, and it is
assumed the following procedures of & -@ and
repeats.

2. Switch SWcg is opened according to the timing of
t=0.

3. Voltage V1 between lines measures time AX(Sec)
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that decreases up to 20V.

4. The electric energy amount consumed by the

parallel resistance load is requested.

| o5
Ac i
utility
power
Eimulata [

QP

Vi : AC Voltmeter
M : Motor Load

R : Resistance Load

Fig. 1.Measurement circuit at energy discharge time

motor load
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power
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oo

: Resistance Load

Fig. 2.Measurement circuit at energy discharge time

resonance load

Result of measurement

The measurement result at the energy discharge

time became a result as shown in Figure 3.

—o—motor G45W

- motor 620W
motor 365W m
motor 170W

—#—resonance circuit

EIS \k\
-
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resistive load R (W)

3000 3500 4000

Fig. 3 Measurement result at energy consumption

time.

It turned out the measurement result that the
rotation machine load 170W was the same as the energy
discharge time of the resonance load. However, it was
assumed that the amount of energy was requested by
the expression (2) from equal uncertain even if the
energy discharge time was the same the amount of

energy.

J=R><ji2dt
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248

@

J : Amount of electric energy [J]
R : Resistance [(]

i : Current A that flows to resistance [A]

The energy discharge characteristic was shown that
it became a result as shown in Figure 4 and the
resonance load was equal to the motor load 170W, and
result the same as the measurement result of the energy
discharge time. Moreover, the difference of the energy
discharge characteristic that was not able to be
confirmed at the energy discharge time was able to be
confirmed from the point where the parallel resistance
load had exceeded 1000W. As for this phenomenon, the
one that the current that flowed to parallel resistance
increased is thought as a factor by the resonance of
parallel resistance and each load.

2500

—+— motor BAGW
—®— motor B2OW

motor 365W
2000 moter 170W

s"\

1000 f\\
B \\\\.\/\Vf'\vﬂvf\ AUA [\\\/
&x:&x'%;é%w}‘—t*tﬂ'

b
L} 500 1000 1500 2000 2500 3000 3500 4900
resistive Inad ROW)

1500

Energy consumed by resistance {J)

Fig. 4 Calculation result of amount of energy discharge.
Alternative examination of motor load by linear load

The motor load is thought to be the same
characteristic as the inductivity load when driving under
no load. Therefore, the current and the voltage of the
characteristic of the motor load of 170W were measured
and arithmetic was done from the measurement result to
the amount of the inductivity load. As a result, it turned
out that the motor load of 170W had the reactive power
of 180Vvar. The load in which the inductivity load for
180Var was added to the resonance load and the motor
load of 170W respectively was made. The islanding test
used the load in which the inductivity load for 180Var was
added to each load. Fig.5 shows the islanding test
circuit.

AC
Photo Power
Cond i- V Utility
array tioner Power
X AGCT Bimi-
simu- (EUT} T l l Iater
Wave recorder YV @ AC Voltmeter A, : AC Ammeter
Analysis system W, : AC Wattmeter Wy, : Vary Meter
(FFT Analysis) CPT : ACPT ACCT : ACCT
Fasc @ LOAD

Fig.5 Islanding test circuit.
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Result of islanding test

It was able to be confirmed to the experiment result
the generation of the islanding phenomenon in this load
balance condition of both loads. Table 1 is an islanding
experiment result of adding the inductivity load of 180Var
to the resonance load. The value is time until stopping
detecting the islanding phenomenon. Moreover, when
the detection value of the islanding phenomenon has
stopped exceeding one second, it judges as an islanding
and the numerical value is not filled in. Table 2 is an
experiment result of adding the inductivity load of 180Var
to the motor load.

Table 1. Islanding detection time of resonance load plus
180var inductivity load.

Reactive power (Var)

Unit [mS]
-10% -5% 0% +5% +10%

-10% | 663.3 | Islanding 676.9 640.8 646.2

Active | 5% 627.9 | Islanding | Islanding 639.8 616.8

power 0% 633.7 | Islanding | Islanding 667.0 619.1

(W) +5% 672.2 | Islanding | Islanding 670.0 632.7

+10% | 690.1 798.1 Islanding | 675.1 649.5

Table 2. Islanding detection time of motor load plus
180Var inductivity load.

Reactive power (Var)

Unit [mS]
-10% -5% 0% +5% +10%

-10% | 618.0 | Islanding | Islanding | Islanding | 626.0

Active | ~0% | 662.0 7020 686.0 691.0 647.0

power 0% 628.0 | lslanding | Islanding 719.0 626.0

W +5% | 67500 | Islanding | Islanding 688.0 601.0

+10% | 649.0 | Islanding | Islanding 649.0 623.0

However, we show the islanding experiment result
of doing in the past only by the motor load in Table 3.

Table 3. Islanding detection time limit by motor load

(170W)

Reactive power (Var)
Unit [mS]

-10% -5% 0% +0% +10%

-10% | 655.0 | Islanding 743.0 702.8 637.8

Active | -5% 644.6 684.8 [slanding | Islanding | [slanding

power 0% 628.3 | Islanding | Islanding | Islanding 650.8

(W) +5% 641.6 | Islanding | Islanding | Islanding 621.6

+10% | 6476 726.6 [slanding | Islanding 619.6

Only the motor load is generated when the
experiment results of doing only by the motor load in
experiment result and Table 3 where the resonance load
in Table 2 was combined with the motor load are
compared and more islanding phenomena are generated.
islanding detection time of resonance load plus 180Var
inductivity load. When the factor to generate the
islanding phenomenon that is the characteristic of the
motor load that the influence by the resonance loads
originally has been erased, this test result is surmisable.

Summary

This result of reviews were compared by adding the
amount of the inductivity load of equal to the motor load
amount to the resonance load, and experimenting on the
islanding prevention with resonance load 2.6kVar as an
alternative load of the motor load.

As a result, even if the inductivity capacity of the
motor load was able to be shown simply as a linear load
of the inductivity load because a lot of islanding
phenomena were generated in the case only of the
rotation machine load, it turned out to differ from the
factor to generate the islanding phenomenon though the
thing that almost the same islanding phencmenon as
both load condition is generated was confirmed.
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Analysis Results of Maximum Power Point Mismatch
on Grid-connected PV Systems
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This paper describes the method to estimate maximum power point of the PV systems under the measured irradiance
and module temperature, reviews the error factors of the MPP estimation and summarizes the analysis results of the MPP
mismatch analysis for grid-connected PV systems. Spectral mismatch is not always the loss factor but gain factor in
cloudy condition. Regular loss including MPP tracking error is a major factor of MPP mismatch.

Keywords: PV systems, Maximum power point, loss, spectral mismatch

INTRODUCTION

Performance analysis of the PV systems normally
uses irradiance data as an input energy and module
temperature is used to estimate the ideal output energy
and maximum power point (MPP) of the PV systems
under the measured irradiance and module temperature.
There are several factors which may affect the accuracy
of the MPP estimation, some of them have non-linear
characteristics for the irradiance and temperature. This
research concentrates to analyze the loss of DC output
energy using array output current and voltage. Simple
MPP estimation methods are introduced and analysis
results of MPP mismatch are summarized in this paper.

PV SYSTEMS AND MEASUREMENT

Data from “Demonstrative research on clustered PV
systems” are used Iin this paper. "Demonstrative
research on clustered PV systems” is a project of New
Energy and Industrial Technology Development
Organization and being conducted from December, 2002
to investigate about the potential issues of
grid-connected PV systems.

One-minute averages of secondly measured data
are used for the analysis. PV array’'s output current and
output voltage are measured at the input terminal of the
power conditioning subsystems (PCS). Global irradiance
and direct irradiance are measured at the meteorological
stations. Incoming irradiation at the PV array’'s plane is
calculated using direct model for direct components,
Perez model [1] for diffused components and uniform
reflection model for reflected components. Module
temperature is measured at the selected systems using
thermocouple sensor.

More than 100 PV systems are initially evaluated
and 80 PV systems which do not have shading loss are
selected for this analysis. Orientations of the PV arrays
are south, east or west. Some of the systems have single
array but others have multiple arrays oriented different
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direction. Data from March 2005 to February 2006 are
used in this study.

METHODS

Input data of the analysis are Irradiance [kWImQ] on
the PV array's plane, PV module temperature [degrees
Celsius], PV array's output voltage [V] and output current
[A]. Ratios of measured value to estimated MPP value
for current, voltage and power are used for the MPP
mismatch analysis.

Estimating maximum power points

Short circuit current (Isc) and open circuit voltage
(Voc) under the measured irradiance at measured
module temperature can be calculated using following
equations.

G
I, = G—ISC(O) [1+a(r-7,)| )

0

Ve =Voell+ BT -1, )
Where

G . Irradiance [kW/mz]

Go  :lrradiance in STC (= 1[kW/m2], AM 1.5G)
Iscroy © Short circuit current in STC [A]

a : Temperature coefficient of |sc [degC’W]

T : Module temperature [degC]

To : Module temperature in STC (= 25[degC])
Vocioy: Open circuit voltage in STC [V]

B : Temperature coefficient of Voc [degC’ﬂ]

Ideal maximum power point current (lpma) and
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maximum power point voltage (Vema) are calculated
from the following equations using the results of
equations (1) and (2).

_ ]Pmax(O)
Pmax ~— T80 17 &)
SC(0)
VPmax
_ ()]
VPmﬂx - VOC Vi “
ac(0)
Where

lpmaxio; : Maximum power point current in STC [A]
Vemax(o) © Maximum power point voltage in STC [V]

Error factors

Spectral mismatch is one of the known error factor
for the |s- estimation. Equation (1) dose not have a term
to correct spectral mismatch because spectral data are
not available in the data set. Thus spectral mismatch
between Gy and G might be an error factor for the lsc
estimation.

Vo estimation also has a known error factor. Actual
Voo will become lower along with the G decreasing
compared with the estimated Voc from equation (2). [2]
However, this behavior is not considered in eguation (2)
due to the lack of the data of characteristics for installed
PV modules.

Change of the fill factor (FF) [2] [3] is another error
factor in equations (3) and (4).

Incident angle correction

Incoming irradiance is measured by pyranometer
and incident angle dependence of the pyranometer is
less than 3[%]. However, PV module’'s surface is
normally flat so there will be reflection loss due to the
large incident angle. Simplified calculation method [4] of
reflection loss is used to correct this effect. Effective
refractive index of 1.8 is used for the correction. Figure 1
shows relative transmittance of the PV module (1py) as a
function of incident angle. Assuming the reflection loss
will reduce the input irradiance G, ratio of measured
output current (1) to lpmax is calculated using equation (5).

100

i, i

60 1\‘-
40 -.."*
20 \

0 10 20 30 40 50 60 7O 80 90
Incident angle [deg]
Fig. 1. Relative transmittance of the PV module as a
function of incident angle.

Transmittance [%]
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Where
R - Ratio of | to estimated lpma

DC voltage correction

During the DC power transmission from the PV
array to the measurement point at the PCS input terminal,
voltage becomes lower due to the resistance of the cable
and blocking diode. This voltage drop (Ay) is calculated
using following equation.

A, =06+02 ] ®)

0.6[V] represents the voltage drop at the blocking
diode and 0.2[ohm] is the resistance of the cable that is
calculated using 20[m] of CV cable (2[mm2]), the most
frequently used cable within the evaluated systems.
Using the calculated Ay, ratio of measured output voltage
(V) to Vemax is described as follow.

e

R, = %)
VPmax _AV

Where

Ry . Ratio of V to estimated Vemax

Power calculation

The ratio of measured power (P) to estimated
maximum power (Pra) is calculated using following
equation.

IV
R, = =R,-R, ®
(IPmax Top )(VPmax - AV)
Where
Rp . Ratio of P to estimated Py 4

Data filtering

To minimize the intentional MPP mismatch by PCS,
data under the high grid voltage condition and PCS
capacity shortage condition are excluded from the data
set. The threshold voltage of high grid voltage is 107[V].

RESULTS AND DISCUSSIONS

Ratios of measured value to estimated MPP value
for current, voltage and power are calculated for each
one-minute data and its frequency are summarized for
each irradiance level in an increment of 0.01 [kW/mQ] .
Results are shown in contour graphs of Figures 2, 3 and
4. Average ratios and standard deviations for each
irradiance level are also shown in these figures.

As a result, both current and voltage showed lower
R, and Ry when the irradiance level is very low. Standard
deviations at low irradiance level are larger in both
current and voltage, one of the reasons is a small value
of a denominator for the ratios calculation. R, once have
a peak around the irradiance level of 0.2 to 0.4 [kW/m2]
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then gradually go down but Ry have a peak at very high
irradiance level. Higher voltage and lower current at the
high irradiance level indicate that operation point is not
on MPP but slightly shift toward Voc.

« lIrradiance vs Current Average
Irradiance vs STDEV
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Fig. 2. Rj analysis results.
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Fig. 3. Ry analysis results.
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Fig. 4. Rp analysis results.
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To analyze more detail about the results, all the data
are classified into five conditions. The first condition is
the irradiance level of less than O.15[kW/m2]. This
category has lowest ratios and largest standard
deviations. As it is mentioned before, voltage drop and
change of FF are more severe in low irradiance level,
thus this category can be assumed that estimated MPP
values may have a lot of error. Generated power in this
class is 6.2[%] of the total of generated power, loss in this
class is 10[%] of the total loss. Generated energy and
loss for each irradiance level and those cumulative
percentages are summarized in figure 5.

The second condition is also the irradiance but more
than 1.05[kW/m2]. Data under this condition generate
only 1[%] of the total so this category may have scatter.
Loss in this class is 2.4[%)] of the total loss.

After excluding these two conditions, rest of the data
are classified to three weather conditions, i.e. clear,
cloudy and other. The definition of the clear is the data
which clearness index is more than 0.7, that of cloudy is
the data which ratio of diffused light is more than 0.95.
Classified results are summarized in table 1.

Table. 1. Analysis results for five conditions.

G%E%E}Ed Loss [kAH] [ 157,540 |Average /5| Standerd
<015[kw/m?]| 193501 2365.1 0.70 0.802 0.280
>1.05[kW/m’] 31478 569.4 017 0.848 0.093
Irradiance: 0.15[kW/m?] < G < 1.05[kW/m’]

Clear 1115110 110348 327 0912 0.063
Cloudy 29019.1 -46.8 -001 0.998 0.195
Other 1511898 97220 288 0.941 0.123
All 314217.7] 236445 7.00 0.905 0.179

Air Mass: 1.3-1.7, Irradiance: 0.15[kW/m’] < G < 1.05[kW/m’]
Clear 22169.2| 19209 | 057] 0922 o004

Generated Energy
—— Cumulative Percentage
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Fig. 5. Generated energy, loss and those cumulative
percentages for each irradiance level.

As a result, clear and other condition have 46.7[%]
and 41.1[%] of the total loss respectively but cloudy
condition has 0.2[%] of gain. This gain can be explained
as a spectral mismatch which is also mentioned before.
Figures 6, 7 and 8 show the ratios R|, Ry and Rp for each
weather conditions. In addition to the above three
weather conditions, air-mass of between 1.3 and 1.7 in
clear condition are also plotted in these figures. As
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shown in figure 6 and 8, only the cloudy condition results
more than 1 of R, and Rp because of the “matching” of
the spectrum. Figure 9 describes the examples of the
relative spectral response of c-Si solar cell and
normalized spectral irradiances of AM 1.5G, clear and
cloudy conditions. Cloudy condition have relatively blue
rich spectrum and this will match with the spectral
response of ¢c-Si PV modules. [5] Thus actual output
current is larger than the estimated Ilpmax in cloudy
condition. On the other hand, clear condition sometimes
have red rich spectrum compared with the AM 1.5G
spectrum and this will reduce the output current of the
¢-Si PV module. This spectral mismatch can be seen in
figure 6. R, of all clear condition are lower than the
results of AM 1.3 to 1.7 condition specially at the higher
irradiance level.
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Fig. 6. Average R, results for four weather conditions.
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Fig. 7. Average Ry results for four weather conditions.
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Another factor of MPP mismatch is the system
configuration itself. Since these are not the results of PV
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modules but systems, array configurations and variations
of the PV modules can cause mismatch of system peak
power. Soiling and degradation are also the causes. To
estimate this kind of regular loss, AM 1.3 to 1.7 clear
condition is used because of its minimal standard
deviation and better spectrum matching with the AM
1.5G. Considering the variation of the measurement error,
average plus standard deviation is assumed as a regular
loss. As a result, 62.9[%] of the loss are assumed as a
regular loss including regular MPP tracking error, that is
4.4[%] of the expected energy out. Rest of them is
assumed as spectral mismatch loss and gain, MPP
tracking error and other non-identified loss factors, that is
1.7[%] of the expected energy out.

/ ; ; v
0 u i i i i i i i ‘ 0
280 380 480 580 680 780 880 980 1080

wavelength [nm]
Fig. 9. Relative spectral response of c-Si and normalized
spectral irradiance as a function of wavelength.

SUMMARY

Detailed analyses of MPP mismatch are performed
in this paper. Results indicate the non-linearity of Vpmax
and FF are not the major error factor for MPP analysis
because of the low irradiance level. Spectral mismatch is
not always the loss factor but gain factor in cloudy
condition. Regular loss including MPP tracking error was
a major factor of MPP mismatch in this analysis.

“Demonstrative research on clustered PV systems”
is a project of New Energy and Industrial Technology
Development Organization (NEDO). Authors would like
to acknowledge the financial support of NEDO and
cooperative discussions with project members.
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SUITABLE VERY LARGE-SCALE PV (VLS-PV) SYSTEMS FOR DESERT REGIONS
FROM FOUR TYPE CASE STUDIES BY USING LCA METHOD
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To save the earth from environmental issue such as grovel warming and energy problem, the authors proposed
combination of environmental friendly PV system and huge and shiny desert area, and evaluated the possibility of the
systems by using LCA method. As a result, 1) It has potential to solve energy issue, 2) Slow down the speed of global
worming, 3) Hope low price and high efficiency PV module, 4) Lower array structure reduces steel and foundation, 5)
Highest module efficiency make the most suitable system, 6) In case of same transmission length, high irradiation area
such as Sahara desert is suitable, 7) Interest rate and wage effect generation cost.

Keywords: VLS-PV, desert, LCA, energy payback time, CO; emissions rate

INTRODUCTION

Some organizations propose ‘Sustainable
development’ with large photovoltaic system utilizations.
Especially, German advisory council on global change
(WBGU) [1] estimated that solar electricity is more than
two-third of world energy demand in 2100 in a
sustainable development scenario. The authors propose
utilization of wvery large-scale photovoltaic power

TUAT Kurokawa Laboratory
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connect large PV in desert to big demand such as city. 5)
PV is clean and maintenance free. From these reasons,
the authors have started to find a way to resolve energy
problem and environmental problem by large-scale PV
utilization with support of IEA/PVVPS Task 8 members.

OBJECTIVE

This study is about possibility of combination of



expense of the VLS-PV [US centfyear] divided by Annual
power generation [kWWhiyear] equal Generation cost [US
cent/AWh]

Energy payback time (EPT)

EPT means years to recover primary energy
consumption throughout its life-cycle by its own energy
production. Total primary energy requirement of the
VLS-PV throughout its life-cycle [GJ] divided by Annual
primary energy reduction by using VLS-PV [GJiyear]
equal EPT [year]

CO; emission rate

CO, emission rate shows amount of CO,
produced by one kWh electricity. Total CO2 emissions
throughout its life-cycle per life-time [g-C/year] divided by

ER%< Papers

RY Wt 1TW 3T W LIV Ry UIQLUIIIICLLIIIE wUY,
SVC (Static Var Compensator), and a common power
board are installed in a 100 MW unit. Table 2 is
information about the balance of systems (BOS) for a

100 MW system.

& T Wi

PV module

Four types of PV module were selected in this
study. m-Si module-1 (Case study B) is 152 W, 158 %
module efficiency and -0.49 %/ C coefficient of power.
m-3i module-2 (Case study A C, D) is 120 W, 12.8 %
and -0.5 %/ °C. a-Si is 58 W, 6.9 % and -0.22 %/ °C.
CdTe is 65 W, 9.0 % and -0.25 %/°C. CIS is 80 W,
11.0 % and -0.36 %/C. PV module prices are given 4
USD/W to 1 USDAN.

Table 1. (Geographic information for world deserts
Region Sahara Sahara Negev Thar Sonoran Great Sandy Gobi Gobi
Nema QOuarza- Betdagan  Jochpur  Chihuahuan  Portheadand  Hohhat Dalan-
Location 16°N zate 32°N H°E 26N 28N 106 20°S 118°E 40°N zadgad
7oW 31°N 6°W 7%E 111°E 43N 104°E
Ambient 30.2
temperature °C] 19.2 18.9 26.9 18.4 26.1 58 35
Global 2688 2042 1943 2173 1998 2345 1702 1570
Tilt angle=10° 2750 2159 2042 2301 2100 2418 1848 1736
Tilt angle=20° 2789 2235 2104 2381 2170 2451 1958 1865
Tilt angle=30° 2721 2254 2115 2407 2184 2422 2020 1949
Tilt angle=40° 2604 2221 2075 2374 2148 2334 2031 1985
Tracking (One 3707 2882 2751 3007 2743 3324 2408 2350
axis flat plate) [kWh-m'2 -yr'ﬂ]
238

N
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Array design

Fig. 3. shows the basic structures of array
supports for a 30 degree tilt angle. It is assumed that
array support is made of zinc-plated stainless steel (SS
400), and thickness of several types of steel material are
chosen according to stress analysis assuming that the
wind velocity is 42 m/s (based upon the design standard
of structure steel by the Japanese Society of
Architecture). Cubicle foundations made of concrete are
applied. The rectangular solids are about 1.0 m each,
considering the design standard of support structure for
power transmission by the Institute of Electrical
Engineering in Japan. Material composition of the
concrete is determined in order to obtain 240 kg/cm2 of

~ranarata ctranath

syswcin
Wiring

The short and simple wiring is designed in order
to prevent miswiring. The cable is considered current

capacity to make the voltage drop less than 4%. It is
determined from Japan Industrial Standards-JIS.

Transmission

The electric transmission system is assumed to
be 100 km, 2 channels, and 110 kV for connecting to

TUAT Kurokawa Laboratory
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existing transmission. It consists of steel towers,
foundations, cables, and ground wires. They consider a
wind velocity 42 m/s. After calculations, transmission
lines and ground wires are decided at TACSR 410 sq
and AC 70 sq. An expert of utility company designed the
transmission towers. 22.0 ton steel tower and 22.1 m’
foundation are required for each 334 towers for 100 km
transmission. Transmission loss is also considered.
Details of transmission loss have been discussed in
previous paper [5].

RESULT OF CASE STUDIES

Case study A

Thraa himae Af arrmue whicrh ara hinh  meAdarsia

CILALTY QD DWW LY. Y 1L wad 1 Y™ RV VL 19l
multi crystalline silicon, 20.2 for amorphous silicon, 17.5
for CdTe, and 14.0 for CIS module technology. The
majority of all systems is the array support. High module
efficiency can reduce CO, emissions rates because it
can reduce array support structures and foundations that
require much energy to produce.
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Case study C

Case study C was studied for economic analysis.
Fig. 7. that is a summary of generation cost of VLS-PV in
the deserts suggests that the VLS-PV system is
economically feasible for all the regions. Irradiation in
Sahara is higher than Gobi, but generation cost is similar.
Generation cost of Negev and Great sandy is higher than
others. Because these country's wage is high.

Gabi Sahara-Cuarzazate

i
25 o Hege: | CGreat Sand ahara-Nema
Hullior | 453002 L IModule price
20 = 3 3. =4 USDW
— — TSI
] 2TSDIW
L — 1 TSIV

Generation cost (UScent/kWh)
—
th

0
1500 2000 2500

Annual global horizontal irradiation (kWhemZ2-year!)
Fig. 7. Generation cost of VLS-PV in world desert

3000

Case study D

Table 4 is a result of comparison between fixed
flat plate system and one axis sun tracking system.
Tracking system can reduce 10 to 15 % of generation
cost, even though generation cost of tracking system
include high maintenance cost which was referred to PV
USA project [6]. EPT and CO; emission rate of tracking

Table 4 Generation cost of fixed and tracking system

PV module m-Si (Fixed) m-Si (Tracking)
Module price

1 USD/W 6.8 6.3

2 Usbw 1.3 9.8

3 UsSbw 15.4 13.2

4 UsSDwW 19.5 16.7

EPT [year] 22 2.1

CQO2 emissions rate 14.8 133
[g-C/kWh]

240

system is also smaller than fixed system. But difference
is not big.

CONCLUSIONS

The authors proposed  combination  of
environmental friendly PV system and huge and shiny
desert area to save the earth from environmental issues.
And to know suitable system configuration, over twenty
case studies were evaluated by using Life-cycle analysis.

From comparative studies. Most suitable system is;

« Lower array structure
Lower array structure reduce steel and foundation. It
is lower cost and lower environmental pollution in
case of low l[and cost.

« Higher efficiency module
Efficiency is dominant factor of cost, energy and CO»
estimation.

+ Install in higher irradiation area
In case of same transmission length, high irradiation
area such as Sahara desert is suitable

+ Atracking system has a potential
Tracking system generate much electricity than
constructing the system.

From all case studies;

¢ It has potential to resolve environmental problem
Energy requirement to produce the system is equal to
power production in two to three years.

«  Slow down the speed of global worming
CO; emissions rate was estimated 10-20 g-C/kwh. It
is much smaller than Qil fired plant (200 g-C/k\Wh)

« Hope low price and high efficiency PV module
m-Si is the most suitable in this study. However,
generation cost is still high (20 UScent/kWh) in case
of present module price of 4 USD/W.
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Here, we present the results of a questionnaire survey regarding Solar Home Systems (SHS) in nomadic families in
Mongolia. The present study was performed to clarify user behavior, user satisfaction, problems, needs, and awareness of
SHS by non-users. The survey was carried out in 67 nomadic families by the face-to-face questionnaire method, and 358
responses were received from nomadic families by the mail questionnaire survey method. From the results, most users
indicated that they were satisfied with their SHS. They appreciated improvement in lighting and the ability to watch TV. Itis
shown that SHS is appropriate power system for nomadic lifestyle to compare with other type generation systems from the
view point of users. The main problem for SHS users was a lack of after-sale service.

Keywords: Solar Home System, Electrification, Questionnaire Survey, Nomadic family

INTRODUCTION From the social approach, we were investigated the
guestionnaire survey regarding SHS in nhomadic families
in Mongolia. This study is performed to clarify user

By administration the Mongolia is divided in 21 behavior, user satisfaction, problems, needs, and

aimags, which include 314 soums and the soums are

divided in 1564 bags. About 43% of the total soums awareness of SHS by non-users
(about 135 soums) are not connected with the electricity
transmission lines (off-grid soum). The national ANALYSIS METHOD

electrification ratio was indicated 67.3%, also nomadic
family’s electrification ratio was 17% in 2003. Power
supply in the soums is at a considerably insufficient level
in that diesel generators in the soums only allows 3 to 4
hour daily power supply because of difficulties in long
distance fuel transportation due to bad roads and also
because of instable, insufficient fuel supply to the soums
due to shortage of funds to purchase fuel.

The main purpose of the study was to collect
information about users of the SHS, motivation for using
the SHS, how SHS used, main problems occurring
during the use of SHS, and service which is needed by
users of SHS. The survey was carried out in 67 nomadic
families by the face-to-face questionnaire method, and
359 responses were received from nomadic families by
the mail questionnaire survey method.

The government of Mongolia intends to improve
supply power to off-grid soums by introducing
sustainable and independent renewable energy with a
focus on solar power in order to improve social services

Table 1. Category of questions

such as telecommunication, health care and education. No Questions categary Ques.Num
As a part of this policy, the government is pushing
forward with the 100,000 Solar Ger" Project to provide 1| Abaut the user of SHS 3
portable solar power systems (SHS) for nomads 2 | About motivation for using SHS 5
(Enebish, 2000) [1]. By this national project, 32,000 SHS -
sets introduced to nomadic families since 2000. On the 3 | Abaut the service of SHS 4
other hand, actual condition of SHS use is less well 4 | Abaut the advantage of using SHS 2
understood ih Mongolia and other countries
(Nieuwenhout, 2001) [2]. 5 | Problem and demand 4
6 | About satisfaction with SHS 2

In this study, the regional appropriateness of 7 | SHS awareness of nonuser 4
photovoltaic (PV) systems for nomadic families and
villages in the arid and semi-arid land, were verified by ) . ) .
the case study in Mongolia. As approach angle from The nomadic families from 6 prefectures (aimag) in
technology, potential of solar energy resource, PV the west, central, gnd southern_ regions (thyd, Zavkhan,
module performance by exposure test (Amarbayar, et al., Bulgan, Dundgobi, Dornogobi, and Khentii prefecture)
2006) [3], and the system performance of SHS were chost_an to be an investigation object of this
(Amarbayar and Kurokawa, 2005) [4] based on 37 sites research (Fig 1).

operation data in Mongolia, were evaluated.

333
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2). The response ratio of this survey was indicated low
value (12%) to distributed numbers of questionnaire.
Because, nomadic families move for pasture in every
season, their location not undefined; this survey was
costly and spend time, because the object were in
special conditons. 359 answers are meaning in order to
evaluate actual conditions and trend of user's
CONSCIOUShess.

Table 2. Responce conditions by the object regions

Province SHS user Non SHS user
name
by mail face-to-face
Dornogobi 63 6
Dundgobi 27 -
Bulgan 45 37
Khentii - 7
Khovd 117 -
Zavkhan 107 -
Total 359 50

Other hand, to examine the possibility of the
introduction of SHS in the future, 7 items as the

recognition extent of SHS and the purchase intention etc.,

were set to nonuser of SHS. The execution method was
the face-to-face questionnaire survey method. The
cooperation of the nomadic who was not using SHS was
received from the nomad in the Bulgan province
Khishigundur village (37 families), the Dornogobi
province Sainshand villages (6 families), and Khentii
province (7 families) in total 50 families (Table 2).

RESULTS OF ANALYSIS
Results of survey to SHS user

The ratio of four (28.7%) and five (25.7%) member's
families are indicated high value (Table 7, Q1). As for the
household income, ratios of 1 millionTg (94,000 yen) or
less is high (Table 7, Q2). The nomadic families income
of the this survey objects, is a low tendency compared
with nationwide average annual income 1.24 million
Tugrug (local currency, about 1,060US$) in the
households in the rural area (NSO 2004) [5]. It is
assumed that the reason for this tendency is that the
households of the civil servant and the company
employee with high cash earnings are included in the
households in the rural area.
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Fig.2. Number of cattle owned by SHS user

The price of the market for each single-unit of SHS
is about 40,000 yen including 1 PY module (50W) and
storage battery (12V, 75Ah) and the charge controller,
etc. SHS is very large amount of money for the nomad
whose average income during year is about 1.24 million
Tugrug (NSO 2004) [5]. Therefore, the loan was
executed for one interest-free year from 1999 in
"100,000 Solar Ger” plan, and the subsidy of 50% of the
delivery etc. was taken measures in 2003-2004. In the
estimate of Mongolian Fuel and Energy Ministry, about
32,000 SHS has been introduced by April, 2005 (and by
2000 about 900 sets).

About motivation for using SHS

In the fig. 3 (Q4), 78% of the answer families bought
SHS from "100,000 Solar Ger” project. The case bought
from "Shop or market in the city" and "Door-to-door
selling" was in total about 16%. The use period of SHS
within 1 year, 2 years, and 3 years, more than 3years
were indicated 30%, 41%, 24%, and 5%, respectively.
From this result, it can say that the users with a little
experience of SHS were the majority.

No fuel is
needed

51%

oontribu

1%

100000
Solar Ger
Project
8%

Fig. 3. Answers of the Q4 Where did you buy your
SHS?, Q6 What was your motivation for using SHS?

The answers of not having used the power supply
before use SHS, are 44%. Most of families (56%) have
been used some power supply systems such as the
gasoline generator, the wind power generation systems,
and storage batteries, before using SHS, and their were

N
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knows the convenience of electricity.

The motivation for introducing SHS were "It was
using electrical appliances" (53.3%) in the meaning of
demand to the convenience improvement of life, and
next was "Neighbor used SHS" (21%). "The fuel was not
needed" (51%) and "Easy to transport" (19%) became a
hit to the reason to choose SHS from several types of
power supply systems (Fig. 3, Q6). In the nomadic
families that are uses the small gasoline generator, it is
necessary to procure the gasoline fuel from a village
center away on average at 60km regularly. Because the
enormous expenditure needs in the fuel delivery to
nomadic family, continuous use for the small gasoline
generator is difficult and there is no delivery service.

Maintainance of SHS

From answers of Q10 “How many times did you
have troubles?”, 67 families (18.7%) experienced some
troubles. The failure-prone parts of SHS are charge
controller unit (32.2%), battery (29.7%) (Q11). When the
SHS failured, users asks well known friend about
electricity (54.6%) or repairs by themselves (29.4%)

Problems and needs of users

The main problem of SHS users it that there is no
after sale service at all. First of all it because the
“100000 SHS” project does not provide any service. As
mentioned before about 70% of the families purchased
their SHS from this project. For the private companies
service will not be profitable because of the long distance
and few customers.

Q15 Weak point of SHS? 1¢t Expensive (48.9%),
2nd : Low power (22.7%). Q16 User needs for SHS? 1%
Repair shop in the soum center (39.1%,), 2" - Useful
user manual for SHS (36.8%). Q18 About warranty and
qualty, 1%: To have long time warranty (61.0%), 2"
Improvement of SHS parts (33.2%).

Main problem of SHS owners is lack of service.
There is no service at all. They would like to have service
shops in soum centers, shops where they can by spare
parts for SHS, lamps and other small electrical
equipment. At least they would like to have more
information about SHS and introductions how to use and
how to repair SHS. Many of them said that they would
like to learn to repair SHS, so that they can help
themselves and neighbors.

About the satisfaction with SHS

The most users (90%) indicated that they were
satisfied with their SHS (Fig.4). They appreciated
improvement in the ability to watch TV and lighting.
Because, the answers of Q13 What is the advantage of
using SHS were: 1%: The news, market info etc. on TV
Broadcasting have been acquired instantly (53.3%), P
The weather forecast is obtained in detail (22.9%). It is
shown that SHS is appropriate power system for
nomadic lifestyle to compare with other type generation
systems from the view point of users.
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Yes
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80%

Fig. 4. The user satisfaction with SHS
Results of survey to non SHS user

In addition to this 50 families without SHS in Bulgan,
Dornogobi and Khentii aimag were interviewed. 46% of
them knows SHS well (Fig. 5, Q21) and 71% of them are
going to buy SHS (Fig. 6, Q24). 31% of them would like
to buy some power source, but they don't have cash (Fig.
5, Q23). Annual income and number of cattle of those 50
families is the same as the average of the 405 families
below.

Don't
krow

[ saw
SHS but
didn"t
kriow
much
ahout it
52%

planning

£6%

Fig. 5. Answers of the Q21 How well do you know SHS?,
Q23 Are you going to buy some power source?

Fig. 6. Answers of the Q24 What kind of power source
you would like to buy?

CONCLUSIONS

Here, we present the results of a questionnaire
survey regarding Solar Home Systems (SHS) in nomadic
families in Mongolia. This study was performed to clarify
user behavior, user satisfaction, problems, needs, and
awareness of SHS by non-users. The survey was carried
out in 67 nomadic families by the face-to-face
questionnaire method, and 359 responses were received
from nomadic families by the mail questionnaire survey
method.
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From the results, most users indicated that they
were satisfied with their SHS. They appreciated
improvement in lighting and the ability to watch TV. It is
shown that SHS is appropriate power system for
nomadic lifestyle to compare with other type generation
systems from the view point of users.

The electrification rate increased 18% at 5 years
from 10.7% (in 2000), to 29% (estimation in Mart 2005)
by implementation of the “100,000 Solar Ger” project.
The main problem for SHS users was a lack of after-sale
service. There is a requirement to establish service
chains, review of preferential treatment for the sales and
support system based on market principle.
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Short time fluctuations of solar irradiance will become an important issue with regard to future embedded photovoltaic
(PV) systems. However, when a large number of systems introduce in certain area intensively, the output of the systems
will be stable by the equalization of irradiance fluctuation. This phenomenon is called “the smoothing effect” by the authors.
In this paper, the evaluation method of fluctuation of PV output is described. By using this evaluation method, frequency
characteristics of PV output are evaluated. Moreover, relations between the smoothing effect and installation scale of PV

systems are examined.

Keywords: fluctuation, the smoothing effect, Wavelet transform, clustered PV system

INTRODUCTION

An output of PV systems has a short-term
fluctuation due to weather fluctuation. It may give
undesirable effects on an individual power system, and it
makes the capacity value (kVV value) of the PV system
lower. For resolution of those problems, authors have
studied “the smoothing effect” which is smoothed total
irradiance in the area. Fluctuation of output of a few PV
systems is sensitive, but fluctuation of total output in
clustering PV systems is not remarkable because there
is the smoothing effect of irradiance in certain area.
According to the smoothing effect, the capacity value of
PV systems is increased, and problems for utility
occurred by fluctuation of PV output power can be
alleviated. Therefore, it is very important to quantify this
effect and to develop the evaluation method. In this study,
the evaluation method of smoothing effect of PV systems
is proposed by frequency analysis: ie. Wavelet
transform. Frequency analysis is useful to identify
fluctuation values of each time scales. Over the last few
years, authors have developed this method (L1 15 this
paper, by using this method, the evaluation result of
fluctuation characteristics of PV output is described.
Moreover, relations between the smoothing effect and
installation scale of PV systems are examined.

MEASURED DATA

Irradiance and PV output data 553 PV systems
clustered will be measured every second as the part of
NEDO's project, “Demonstrative Research on clustered
PV Systems” from March, 2004, to March 2008.
Therefore, measured data has been recorded by one
second sampling. PV array power was used for this
analysis.
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APPROACH
Fluctuation Analysis

In an evaluation of fluctuation characteristics of PV
output, it is necessary to know the relation between
speed of fluctuation and magnitude of fluctuation.
Therefore, a new method is suggested to analyze the
fluctuation (see Fig.1.).

First, analytical data is prepared, and the power
spectrum (P3) is calculated from this data by using the
Wavelet transform. Haar has been chosen as a wavelet
function. Next, the peak of PS is detected for each range
of fluctuation time (see Table.1.). An evaluation window
is prepared centering on the peak of PS as shown in Fig.
2, and the difference between the maximum value and
minimum value in the window is calculated. This
difference is defined as Maximum magnitude of the
fluctuation (MMF). MMF shows the biggest magnitude of
fluctuation during a day for each range of fluctuation time.
In other words, this is the worst case in the fluctuation.

‘ Analytical data : § ‘

v

‘ Wavelet transform ‘

\

Detection of peak of PS (Power Spectrum)
for each fluctuation time

v

Calculation of MMF (Maximum
Magnitude of Fluctuation, see Fig. 2.)

Fig. 1. Fluctuation analysis flow.



increased one-by-one by using this increasing pattern.

Fig.4. shows an evaluation flow of the smoothing
effect. First, measured data of 60 PV systems are
prepared. Next, measured data of PV array power is
divided by rated capacity of PV array, and normalization.
This reason is that capacity of PV array is different in
each PV systems. Next, when n (number of PV systems)
is two or more, those data is averaged. It is thought that
the more n increases, the more the smoothing effect
influences averaging data. This averaging data becomes
an input data of the fluctuation analysis of Fig.1. Finally,
these processes are repeated 60 times.

In the evaluation of the smoothing effect, number of
installation of the PV system and installation area of the
PV system is important. However, only number of
installation of the PV system is discussed in this analysis.
Note that the influence of installation area of the PV
system is included.
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RESULTS AND DISCUSSION

In this paper, fluctuation characteristics of three
typical weathers (Fig.5, 8, and 11) are discussed. The
weather was selected referring to reference [3]
Clearness Index (Cl) 0.5 is fluctuation day, Cl 0.39 is
cloudy day, and CI 0.69 is clear day.

When the number of PV systems was increased
from 1 system to about 60 systems, MMF was calculated
each fluctuation time. Analyzed results are shown as
follows. Fig.6, 9, and 12 show the relation between MMF
and fluctuation time when the number of PV systems is 1,
10, 40 and 60. Fig. 7, 10, and 13 show the relation
between MMF and number of PV systems when
fluctuation time is from 2 to 128 seconds.

N
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Fluctuation day (Clearness Index: 0.50)

As for the irradiance on this day, the fluctuation
magnitude is large, and the fluctuation speed is fast. In
Fig.6, short time fluctuation of output becomes small in
60 systems, though one system fluctuates wildly the
output. This reason is that the fluctuation of each PV
system for a short time has not synchronized. In Fig.7, it
is seen that MMF tend to decrease in ranges of 2-32
seconds at fluctuation time as the number of PV systems
increased. The characteristics of MMF showed a flat
characteristic for 64 seconds or more the fluctuation
cycle. Therefore, the smoothing effect was effective at 32
seconds or less.
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Cloudy day (Clearness Index: 0.39)

As for irradiance on this day, fluctuation is small and
slower than the fluctuation day. In Fig.9, there is little
difference of one system and 60 systems in fluctuation
characteristic. This reason is that the fluctuation of each
PV system has almost synchronized. In Fig.10, it seen to
that MMF is constant regardless of number of PV
systems. This means the smoothing effect has not
occurred. However, the fluctuation for a short time will
not become a problem any more than fluctuation day,
because it is smaller than fluctuation day.
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Clear day (Clearness Index: 0.69)

As for irradiance on this day, this irradiance is basic
curve of irradiance, and has no fluctuation by the cloud.
In Fig.12, there is no difference of one system and 60
systems in fluctuation characteristic. This reason is that
the fluctuation of each PV system has synchronized. In
Fig.13, it seen to that MMF is near 0 [kWW/kW] regardless
of number of PV systems. This means the smoothing
effect has not occurred, too. However, the fluctuation for
a short time will not become a problem as well as cloudy
day.
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CONCLUSIONS

Maximum Magnitude of fluctuation was defined as
an evaluation index of the fluctuation characteristic.
From analysis results, it was quantitatively shown that
the smoothing effect occurs on the day when a short time
fluctuation is large. Therefore, the smoothing effect can
be clarified by this evaluation method.

In the future, the smoothing effect will be modeled
based on a long-term analytical result.
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D-UPFC as a Voltage Regulator in the Distribution System
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Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 Japan
{E-mail: onnuri@cc.tuat.ac.jp)

This paper proposes a voltage controller in order to control under-voltage and over-voltage condition in the
distrubution system. The voltage controller, which are called distribution-unified power flow controller {D-UPFC), consists
of ac-ac converter and the transformer. D-UPFC does not use any energy storage component or rectifier circuit, and it
directly converts ac power to ac power. All pass filter and direct-quadrature (d-q) transformation functions are employed in
the D-UPFC control. Also, D-UPFC is located in the pole transformer or any place in the distribution line. Simulation and
experiment results show the possibility of controlling under-voltage and over-voltage conditions in the distribution system.

Keywords: distribution system, D-UPFC, ac-ac converter, all pass filter, d-g fransformation

INTRODUCTION

In the present power system, the generated poweris
assumed to feed into the system at the high voltage level
and the power is consumed at the low voltage level.
Thus, the power direction through a transformer would
always be from the high voltage level to the low voltage
level [1]. The present power system is shown in Fig. 1.

Transmission Distribution Pole
Substation Substation transformer
66[kV] / 6.6[kV] 6.6[kV]/ 100[V]
| | | | | |
Y
QHesle GD el G|
110 T[%]

Voltage
range

85

Fig. 1. The present power system.

However, when the clustered PV system connects
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So far, some distribution voltage controllers have
been used in the distribution system. Dynamic voltage
restorer (DVR) and uninterrupted power supply (UPS)
systems have been researched and developed along the
last decades. They are capable of compensating
under-voltage and over-voltage conditions. However,
they depend on devices in order to store energy. like
large capacitors or battery bank. If the power increases,
the size of the devices will increase [2].

This paper proposes D-UPFC in order to control
under- and over-voltage conditions in the distribution
system. D-UPFC consists of ac-ac converter and the
transformer. The ac-ac conhverter uses four MOSFET
switches, input and output LC filters. D-UPFC employs
all pass filter and d-q transformation. D-UPFC does not
need any energy storage components, such as large
capacitor or inductor. Morever, D-UPFC does not use
any rectifier circuit in order to convert ac power to ac
power. However, it directly converts ac to ac conversion.

This paper begins by studying D-UPFC concept with
clustered PV system. D-UPFC circuit analysis is
performed. In the D-UPFC control, all pass filter and d-q
transformation methods are used in order to control
distrubution line wvoltage simultaneously. Switching
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Fig. 9. Real and imaginary values in the all pass filter

Using the all pass filter concept, the real and
imaginary values can be expressed,

V. = bisin(wt) 3

v, :blsin(wr%):—blcos(wr) @

\Where, V; and Vi mean real and imaginary values,
respectively. by is the instantaneous voltage magnitude.
According to eq. (3) and (4), the single-phase d-q
transformation is given by,

qu =TV, )]
sind  —oso
Where, T= ,0=0f
cosd  sind

Where, Vy and V, indicate the real and imaginary
voltages, respectively [5]. D-UPFC control block is
shown in Fig. 10. The purpose of D-UPFC control is that
D-UPFC output voltage V.4 always follows the
reference voltage V. D-UPFC input voltage V., output
voltage Vi;ay and current |34 are sensed and change the

Fig. 11. D-UPFC simulation model.

D-UPFC simulation model is considered from the
substation to the load and clustered PV system. The
basic simulation model is shown in Fig. 11. D-UPFC
locates behind the pole transformer. Considering line
impedances in the distribution system, the distance
between the substation and the pole transformer is 1[km)],
rom D-UPFC to the point of common coupling (PCC) is
45[m]. The distance between PCC and the load or
clustered PV system is 15[m).

D-UPFC simulation model parameters are shown in
Table 2. Also, ac-ac converter parameters are shown in
Table 3.

Table 2. D-UPFC simulation model parameters.

Substation vol.{(sec.) 6.6[kV, rms]

Pole trans. vol.(sec.) 1001V, rms]

Z 0.025+j0.034[QM km]

Z3 0.011+0.013[Q/45m]

Z:3 & 2,y 0.00345+j0.00015[0/15m]
Load 3.33[Q]

lpy 100[A, rms]

Max. output voltage 100}V, rms]

Max. output current 70[A rms]

Max. power T[]

1758
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Fig. 13. D-UPFC control in the under-voltage condition.

The over-voltage simulation result is shown in Fig.
14. Here, D-UPFC control voltage expresses,

Ve =Vyep > 2LV, rms] @

e

Where, Vine means the distribution line voltage. In the
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TRANSLATION EQUATIONS FOR TEMPERATURE AND IRRADIANCE OF THE I-V CURVES OF
VARIOUS PV CELLS AND MODULES BY LINEAR INTERPOLATION

Yuki Tsuno™ 2, Yoshihiro Hishikawa' and Kosuke Kurokawa®
! National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2,
1-1-1 Umezono, Tsukuba, |baraki, 305-8568, Japan
2Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan
Phone: +81-42-388-7445, FAX: +81-42-388-7445, E-mail: kanbai@cc tuat.ac.jp

A new translation procedure based on the linear interpolation/extrapolation is proposed, in order to translate
the 1-V curves to target conditions of irradiance and temperature. The accuracy of the method is investigated,
based on the indoor and outdoor |-V curves of various kinds of PV cells and modules. The calculated |-V curves
over a wide range of irradiance and temperature well agree with experimental results for various kinds of PV cells
and modules. These results indicate that the translation of the |-V curve based on the method is effective for
estimating the performance of the PV devices under various climatic conditions.

Keywords: |-V curves, translation, temperature, irradiance

INTRODUCTION

It is useful to understand the effect of the irradiance
and temperature on the photovoltaic (PV) cell and
module performance, in order to estimate their |-V
curves under various climate conditions for power rating
and energy rating. Although translation equations based
on "shifted approximation" are employed on irradiance
dependence in some current standards [1], those
equations can deviate from experiments when the
variation in the irradiance and/or temperature is large.
Also some equations are applicable for limited kinds of
PV devices. Recently, the linear interpolation method
for the |-V curves was proposed based on experimental
(indoor and outdoor) data on various kinds of PV cells
and modules [2-5]. This method can accurately
estimate the performance of various kinds of PV cells
and modules for a wide range of irradiance (G) and (T).
This method requires that G or T of the reference |-V
curves is the same. However, it is not always possible
to obtain such reference |-V curves, especially under
outdoor conditions. In this study a new practical
formation for the linear interpolation/extrapolation is
proposed. The accuracy of the method based on the
experimental |-V curves of various kinds of PV cells and
modules is investigated.

LINEAR INTERPOLATION METHOD

The present study demonstrates the new practical
formulae [6, 7], which are extension of the equations
and do not require adjustment of the reference |-V
curves. The procedure of the linear
interpolation/extrapolation of the present study is as
follows. The measured current-voltage characteristics
are corrected to target G and T values by equations (1)
and (2).
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V.=V, +a(,-V) M

I=I+a{I,-1) 2

Here, |, and V, are the current and voltage of the
reference |-V curve measured at an irradiance Gy and
temperature T,. |I; and V; are the current and voltage of
the reference 1-V curve measured at G; and T,. |3 and
V3 are current and voltage of the I-V curve at G; and Ts.
which is the target of the translation. The pair of (I,,V,)
and (I», V;) should be chosen sothat I, = Iy + (loez - lsed)-
Here, l;1 and lg.; are the short circuit current of the
reference |-V curves. & is a constant for the
interpolation, which has the relation with the irradiance
and temperature as shown in Egs. (3) and (4) (Figs. 1-
3). When O< a <1, the procedure is interpolation, When
a <0 or a =1, the procedure is extrapolation.

G,=G,+a-(G,~G,)- (3)
L=T+a(T,-T) 4

Equation (5) is also applicable, when the |,. of the
device is linear with G. Here, |, is the short circuit
current of the target |-V curve.

Isc3:15c1+a'(15027]scl)’ (5)
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Fig.1 Schematic procedure for the calculations

based on Eqgs. (1)-(2); translation for G at constant T.

SC T,

G=G,=G,

Ich

Current

N |2 = |1 +(|sc2 - Isc1)

Voltage

Fig.2  Schematic procedure for the calculations
based on Eqgs. (1)-(2); translation for T at constant G.

T, #T,# T,

G, #G, # Gy

Current

N =1+ (- 1ey)

V2. 1)

Voltage
Fig. 3 Schematic procedure for the calculations
based on Egs. (1)-(2); simultaneous translation for G
and T.

The primary advantage of the Eqs. (1), (2) is that
there is no restriction for the |.(or G) and the T of the
reference |-V curves. Therefore, any |-V curves can be
used as the reference |-V curves without adjustment.
Translation of the |-V curves for G at constant T (Fig. 1)
and translation for T at constant G (Fig. 2) are possible
by the same formulae. Furthermore, simultaneous
translation for both G and T is possible within the
relation of Eqs. (3) and (4).

202

By utilizing present procedure, |-V cures at wide
range of G and T can be calculated from only three or

four reference I-V curves measured at indoor or outdoor.

Fig. 4 shows the example of the Ilinear
interpolation/extrapolation of four reference I-V curves
into the target |-V curve. 1-4 are reference |-V curves. 7
is the target |-V curve. First, |-V curves 5 under target
temperature are calculated from |-V curves 1 and 2.
Similarly, |-V curves 6 under target temperature are
calculated from |-V curves 3 and 4. Then |-V curve 7
under target temperature and irradiance is calculated
from |-V curves 5 and 6. It is noted that other order of
the calculation is also possible. At least three reference
|-V curves can calculate the |-V curves at wide range of
GandT.

5 .- ®
= e ol
o) .
[l .
£ :
3 .
]
25 T
50 :
(&
Ec
=~ :
5 .
T e’
- 4 gern 5
@ Reference
Temperature
Fig.4 Example of the linear

interpolation/extrapolation of four reference I-V curves
into the target |-V curve. 1-4 are reference |-V curves. 7
is the target |-V curve.

TRANSLATION OF THE |-V CURVES
Indoor results

The |-V curves at various G and T were calculated
by the present procedure using equations (3) and (4)
from the experimental reference |-V curves. Typical
single-crystalline Si, polycrystalline Si, amorphous Si
and a-Sifthin-film crystalline Si tandem cells were used
as samples. Their sizes ranged 2-10 o', They were
attached on metal plates, whose temperature was
stabilized at 20°C, 30°C, 40°C, and 50°C by a flow of
temperature controlled water. The temperature was
controlled within a nominal accuracy of +0.2 °C. A solar
simulator was used as the light source of 100 mWicm?,
Irradiance was controlled by metallic thin film neutral
density filters. For each solar cell, four reference I-V
curves with irradiance of 0 and 100 mWem® and
temperatures of 20°C and 50°C.

The calculated |-V curves well agree with the
experiment for all the samples measured in the present
study. For example, Fig. 5 shows the results for a
polycrystalline Si cell. Measured and calculated |-V
curve parameters lg., Voo, maximum power (Pqa) and
fill factor FF excellently agreed, as shown in Figs. 6 and
7. Root mean square error (RMSE) between measured
and calculated P, for all the samples was <0.5%.
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Fig.5 Measured (circles) and calculated (lines) I-V

curves of a polycrystalline Si solar cell. 1-V curves
measured at G = 0 and 100 mW/em’ and T = 20°C and
50°C were used for the reference I-V curves. Calculated
results show very good agreement with the experiment.
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Fig. 8 Measured (circles) and calculated (lines) I,

Voo, Prmae @and FF for the polycrystalline Si cell shown in
Fig. 5 as functions of the temperature T. The irradiance
G is 100 [mW/cmz]. The parameters are normalized to
the value at T=20°C. The measured and calculated
results agree within the RMSE of 0.1%.
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Fig. 7 Measured (circles) and calculated (lines) I,

Voe, Pmax @nd FF for the polycrystalline Si cell shown in
Fig. 5 as functions of the irradiance G. The temperature
T is 20 °C. The parameters are normalized to the value
at G=100 [mW/cmZ]. The measured and calculated
results agree within the RMSE of 0.5%.
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The present method does not restrict the G and T of
the reference |-V curves , and can simultaneously
translate the |-V curves for G and T. Fig. 8 shows the
example that the I-V curves at (100 mW/ch, 25°C) and
(20 mWiem?, 50°C) is successfully translated into the |-
V curve at (52 mWiem’, 40°C). The error of measured
and calculated Pmax was -0.1%. By utilizing present
procedure (Egs. (1) — (3)), the |-V curves at wide range
of G and T can be calculated from only three or four
reference |-V curves measured indoor or outdoor.

Ancther feature of the present formulae is that the
series resistance R, of the PV devices need not be
considered, because the effect of R; in the translation
for G is automatically cancelled by the procedure of Eqgs.

(M-(3).

(100m¥em?, 25 deg C)
010 -
. (52mvom?, 40 deg C)
< gos T
=
= L
= (20mwicm?, 50 deg C)
=
O \
0.00 L
0o 02 04 5
[ | xMeasured
— Calculated
=Reference
-005
Voltage [V]
Fig. 8 Measured (symbol) and calculated (line) |-V

curves of pola/crystalline solar cell. TheQI—V curves at
(100 mWicm®, 25°C) and (20 mW/cm®, 50°C) were
successfully translated into the |-V curve at (52 mWiem?,
40°C). Blue lines are two reference |-V curves
measured at different irradiance and temperature.

Qutdoor results

Translation of the |-V curves was also investigated
by using the experimental I-V curves of the outdoor PV
modules which are located in Tsukuba, Japan. Data
were taken for about 3 months. The total number of the
|-V curves used was about 15,000. The four |-V curves
with the (.. and T) of (5.36A, 65.3°C), (5.01A, 49.0°C),
(1.02A, 37.8°C) and (0.81A, 23.4°C), were used as the
reference (Fig. 8). The |-V curves calculated by the
reference |-V curves showed very good agreement with
the experimental data (Fig. 9). For example, the
standard deviation between the measured and
calculated P, was about 0.75% (Fig. 10), which
demonstrates the accuracy and usefulness of the
present procedure of the linear interpolation. Similar
results for other PV technologies are also reported
based on the outdoor data taken at different location in
Japan [6].
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Fig. 10 Examples of measured (lines) and calculated
{circles) -V curves of a polycrystalline Si PV module.
Calculated results show very good agreement with the
experiment.

3000

2500

2000 -

Frequency
o
=
=
!

1000 F
NI
i : ! ‘ f : —
-3 -2 -1 i 1 2 3
Relative deviation of Pmax [%]
Fig. 11 Deviation of the measured and calculated P,

of the outdoor poly-Si modules shown in Fig. 8.
Equations (3)-(5) were used for the calculation, based
on the experimental four IV curves, which are also
shown in Fig 8.

CONCLUSION

A new practical formulation for the linear
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HIGH PRECISION SIMULATION MODEL OF BATTERY CHARACTERISTICS

Takae Shimada "2, Kosuke Kurokawa '

' Kosuke Kurokawa Lab., Tokyo University of Agriculture and Technology,
2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 JAPAN
2 Power Supply Systems Unit, Hitachi Reserch Lab., Hitachi, Ltd.
7-1-1 Omika-cho, Hitachi, Ibaraki, 319-1292 JAPAN

This paper reports a simulation model of battery characteristics and its simulation/verification test results. Battery
simulation model is necessary in order to simulate systems including batteries such as the grid-connected photovoltaic
systems that less depends on the utility grid. The authors created the battery simulation model based on a new method. In
this model, internal resistances depend on current, state of charge, and temperature. Verification test results show 0.5 %
of power simulation error ratio, high precision was confirmed.

Keywords: AE-PV system, grid-connected PV, battery simulation, battery modeling
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Ry = Roo (1 + apyTss)
Ry = Rio (14 ap,Tas)
Vio = Vioo (1 4 av To5)
Sho = Shoo (1 + s, Ths)

e} NI oo

(18)
(19)
(20)
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First, the constants about electromotive force E
are calculated from the measurement results of the part

of step change.

The constants about voltage drop V,

are

calculated from the measurement results of the same
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part and the relation between E and SOC and T,

calculated above.

The constants about voltage rise V, are calculated

725 VU S U P U SO FqUUOU [ S |

Simulation results from the model are shown in
Fig.4 and Fig.5. These results show natural curves.
Terminal voltages in various conditions are calculated by

a simple calculation of substitution.
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VERIFICATION TEST RESULT

Fig.6 shows a verification test result at 17 deg C
of battery temperature. At this point, the test pattern of
battery current was decided by the PV system simulation
based on the irradiance data and the residential electric
power consumption data measured in Tokyo.

There are the voltage estimation errors. But the
errors are in the small current area, so there are little
estimation errors of power. Power estimation error ratio
was 0.5 % at 17 deg C and 32 deg C of battery
temperature. High precision was confirmed.

CONCLUSIONS

To simulate systems including batteries such as
the grid-connected photovoltaic systems that less
depends on the utility grid, the authors propose a new
simulation model of battery characteristics. It can
simulate a battery with high precision without complex
handling.

The authors are defining detailed procedure for
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GRID-CONNECTED PHOTOVOLTAIC SYSTEMS WITH BATTERY STORAGES
CONTROL BASED ON INSOLATION FORECASTING USING WEATHER FORECAST

Takae Shimada " 2, Kosuke Kurokawa '

" Kosuke Kurokawa Lab., Tokyo University of Agriculture and Technology,
2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 JAPAN
2 Power Supply Systems Unit, Hitachi Reserch Lab., Hitachi, Ltd.
7-1-1 Omika-cho, Hitachi, Ibaraki, 319-1292 JAPAN

This paper reports an insolation forecasting method and simulation results of a control method of grid-connected
photovoltaic systems with battery storages. First, it predicts the global irradiance every one hour by using weather forecast
every three hours, and corrects the prediction accuracy by 14 kinds of weather change patterns. Second, it estimates
tomorrow’s photovoltaic generated power from the insolation forecasting, and calculates the best amount of charge to the
battery from the utility grid every night. Simulation results show that providing with battery and using weather forecast are
effective in cost, energy efficiency, and dependence on the utility grid.

Keywords: AE-PV system, grid-connected, battery control, insolation forecasting

INTRODUCTION

Most of the photovoltaic (PV) systems for
residences spreading rapidly are grid-connected type.
Usually, since this system has no electricity storage, the
difference between generated and used electric power is
processed by electric power flow of the utility grid. In the
future so that the PV systems may spread further, it is
necessary to develop “Autonomy-Enhanced” PV
(AE-PV) system technologies with electricity storage
functions that less depends on the utility grid [1]. The
authors propose new control method of grid-connected
PV systems with battery storages.

OUTLINE OF CONTROL METHOD

The control method of proposal contains the
technology of two steps in the PV system configuration
shown in Fig.1. The technology of first step predicts
insolation by using weather forecast announced by the
Japan Meteorological Agency (JMA). The technology of
second step controls battery storage charging or
discharging based on the tomorrow’s insolation
forecasting.

INSOLATION FORECASTING
Weather and irradiance

The authors investigated the past weather (Fair,
Cloudy, and Rain) every three hours of 10 years from
1994 through 2003 based on precipitation and cloud
cover observed in the JMA Tokyo point.

The irradiance observed every one hour in the
same 10 years and the same point are categorized by
the weather, date, and time. And they are calculated the
mean value at each category. Base estimation is defined
as the calculated mean value of days moving average.
Fig.2 shows one example of the base estimation in the
categories of time from 9 to 10 o'clock.

228

Utility grid
Photo- [oC [Dc i
voltaic f DC | AC| ¢
| Power | | Residential
Battery conditioner load
Fig.1: PV system configuration
800
9-10 o'clack
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=
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g
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g 200
z
100 Rain
0
0 0 270 360

180
Date number [day]
Fig.2: Base estimation (9-10 ¢’clock)

Weather change pattern

There must be difference between the cloudy
close to fair and the cloudy close to rain. Then the
observed irradiance are categorized by 14 kinds of
weather change patterns, and calculated the mean
values at each category. Weather change pattern
correction factor is defined as the calculated mean value
divided by the base estimation. Table 1 shows the
categories and the correction factors of the weather
change patterns. The predicted global irradiance every
one hour is estimated by the product of the base
estimation and the correction factor.
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Table 1: Weather change pattern categories and correction factor

Categories Fair Cloudy Rain
ates 1-1 1-2 1-3 2-1 2-2 2-3 2-4 2-5 2-6 3-1 3-2 3-3 3-4 3-5
Correction factor 1.054 1.016 0.884 |1.467 1343 1224 0937 0714 0598 [1.341 1.195 0983 0.793 0.768

Appearance [requency [times/10years] | 14524 4511 6147 | 620 4173 2667 9794 1648 2676 611 975 938 1029 735
LT etz 112 1zt 122 12221 12223 22223 123 131 331 133 13331 33333

Contained weather 11113 113 221 12222 22222 32222 223 | 132 332 233 13332
change pattern 21111 211 22221 32221 32223 321 | 231 13333
31111 311 322 | 232 23331

Fair: 1 21112 212 323 23332

Cloudy: 2 21113 213 23333

- Power conaiuoner moael Electnc power IS 108t witn

- Battery model  The authors also propose a battery three converters shown in Fig.1. _The input_power of
simulation model shown in Fig.5. This model is reported converter is shown by the quadratic expression of the
in the references of [3]. output power.
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Conditions

In this simulation, reverse power flow to the utility
grid is limited in order to less depend on the utility grid. If
the PV excess power is larger than the permissible
reverse power when the battery is charged full, the excess
power is summed up to the PV limiting loss.

Installed PV array rated power is decided as
annual demand electric energy divided by 1000 hours.
The battery capacity is variable.

The simulation uses the irradiance data and the
residential power consumption data measured in Tokyo
every minute during one year, and also uses the weather
forecast announced every day by the JMA.

Results

The simulation results are shown in Fig.6 to 9.
Battery capacity ratio is defined as the battery capacity
divided by the average daily electric energy consumption.
Reverse power limiting factor is defined as the permissible
reverse power divided by the PV array rated power. PV
limiting loss ratio is defined as the PV limiting loss divided
by the PV ideal energy.

Fig.6 and Fig.7 show that using forecast has
advantages in hoth of PV limiting loss and electric bill. If
the demand forecasting error will decrease by increasing
number of demands such as AE-PV clusters [1], using
forecast will have more advantages.

Fig.8 and Fig.9 show that installing battery has
advantages in hard limiting of reverse power. In addition,
the effect of increasing battery capacity weakened when
the battery capacity ratio exceeded the half.

CONCLUSIONS

To develop AE-PV system that less depends on the
utility grid, the authors propose the insolation forecasting
method and the battery control method.

In the PV system limiting reverse power flow, it was
confirmed that using weather forecast is effective. In
addition, the effect of providing with battery weakened
when the battery capacity exceeded the half of average
daily electric energy consumption.

The authors are studying the battery control
method based on the forecasting in the AE-PV clusters.
This work is being supported by NEDO under the Ministry
of Economy, Trade and Industry.
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CONSIDERATIONS ON POWER LINE ROUTER BY USING MATRIX CONVERTER

Teruo Kamakura' Kentaro Hayashi1 Yasuc Ohashi’ and Kosuke Kurokawa'

WTokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan

A power line router has been proposed the power flow control when clustered photovoltaic system (PV) is connected
with utility. Back-to-Back (BTB that means AC/DC/AC converter) and matrix converter are thought as the power line router.
This paper proposes a concept of power line router which is composed of a matrix converter. The matrix converter is
based on direct power conversion without any intermediate DC power stage in order to obtain longer life and smaller size
than conventional BTB system. Simulation with PSIM ver.6.1 shows active and reactive power flow is controlled
independently by matrix converter.

Keywords: matrix converter, virtual indirect method, power line router, Autonomy-Enhanced PV Cluster

INTRODUCTION

Poier ing router
(Inter community)

The installation of PY has been expanding
according to "PV2030 roadmap" in Japan. Generally,
distribution voltage and fluctuation become large Ertern
because of total installation of PV increase. Thus, it has Utility
been said that installation of conventional PV system (B8R
connected with utility has upper limitation. For this matter,
the project Autonomy-Enhanced PV clusters (AE-PVC)
is proposed [1]. In AE-PVC, as the power flow is normally
closed in the community, it is not necessary to
synchronize with an external utility. ~—AE-PVC
configuration is shown in Fig.1. Electricity is generated
by customer's PV, and the electricity that is not used is
stored in the AC battery station. If PV could not generate
power, the power is supplied by AC battery station.
Voltage and frequency inside community are fixed. The
electric power of the AC battery station is thought to be
insufficient to long time insolation shortage or season
change. It is necessary to supply the electric power only
of the determine quantity and time from the external
utility to prepare for such a low-speed change. At this
time, internal community and external utility is
asynchronous and it has possibility of different frequency.

Power line
router
Power line router
(Inter community)

A
AE-PVCE

Fig. 2. Overview of AE-PVC.

Power line
roter

POWER LINE ROUTER

BTB system and matrix converter using power
electronics are considered as a power line router. BTB
system needs intermediate DC link capacitors. On the

In addition, inter-community connection is needed when
two or more communities are implemented as shown in
Fig. 2. In this case, it is required that power flow direction
is changed by the speed of PV system generation. In
AE-PVC, power line router to supply the controllable
electricity is proposed. Proposed power line router
should satisfy the independent control of active power
and reactive power flow in asynchronous and a different
frequency at utility and community or inter-community.

Extemal
Utility
(66KY)

o Series

i device

| Pawer flows confrol
. [rv] Tev] TP
o |
T rouer

|
!

+

| —

| Series

i [ac-pattery device

I | station

v

|

Comrmunity

Fig. 1. Community image of AE-PVC.

contrary, matrix converter does not need any DC link
capacitors and has some advantages such as longevity
and miniaturization. Generally, matrix converter is used
for driving motor load. In this study, matrix converter is
proposed as a power line router from abovementioned
reasons. Matrix converter circuit configuration is shown
in Fig. 3.

s>y Sny  Snw

»
Input filter

Ssi™ SWY Ssw

S S Shw

] Oulput filter |
Lol

Fig. 3. Matrix converter circuit configuration.
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Fig. 4. BTB circuit.

MATRIX CONVERTER CONTROL METHOD
Matrix converter virtual indirect control

In Fig. 3, the relation between input voltage and
output voltage can be expressed in eq. (1).

Vu s D) s Su 5 i vr
Vv =4 ry 5 3v 5 v vs (1 )
vw s v S sW 5, w Vt

Smn 1S the switching function of switch spn. The suffix
m means r, s, t, and n means u, v, w, respectively. S,
equals to "1" when switch s, turned on, and s;;; equals
to "0" when sq, turned off. In matrix converter, it must be
S+ Smn + Smn =1 10 prevent short circuit of input voltage
source and open circuit of output reactive load current.
Fig. 4 shows the main circuit of BTB system (the left side
six switches are PWM rectifier and right side six switches
are PWM inverter). The same as eq. (1), the relation
between input voltage and output voltage can be
expressed in eq. (2).

Qutput fitter

Srp Ssp\  Sip 1 Supy  Svp\ Swp

r u_,
s e.. l v

t 1 | | | w

u 5, wp S un P P P Vr
— P sp 22
LNl I vp S Vs @
Sm Ssn Sm
vw Sw D swn vt

Switching functions in eq. (2), it must be s + s +
sy =1 and sg + Sk =1 to prevent short circuit of input
voltage source and open circuit of output reactive load
current. The suffix kK means p, n, in the rectifier side, u, v,
w in the inverter side. Generally, if the ideal switching
function can be obtained from different topology
converters, the waveforms of the input current and the
output voltage in different topology converters become
exactly the same. Thus, it can be summarized that PWM
pulses of the matrix converter is expressed in eq. (3).

e sU fi up un g g
_ e P 74
Sy S Sy [ = 5 vp Sn
Srn an Sm
Srw ssw Stw Swp Swn
&)

Input veltage
vf
-

Duty ratio
5

Duty ratio
s

Intermediate
voltage ey,

=

Fig.5 . Virtual current mode rectifier duty and eqc.

The eq. (3) only consists of switching functions (*0”
or "1M. Thus, it is easy to calculate by a digital logic
hardware and it consists of "AND" gate and "OR" gate.
This method consists of virtual rectifier control, virtual
inverter control, and PWM pulse pattern conversion.
Thus, it can be controlled complex matrix converter

Virtual rectifier control

Input voltage and the virtual rectifier PWM duty (r
phase) are shown in Fig. 5. The virtual rectifier switches
only operate 240 degree on one period as shown in Fig.
5 (b) and (c). In this rectifier pulse pattern, the
intermediate DC voltage eq4: includes voltage ripple as
shown in Fig. (d).

Virtual inverter control

Duty ratio is a percentage of on-time in triangle
waveform period. Thus, numerical multiplication of duty
ratio is not always equates to logical "AND" gate
calculation. The logical multiplication result of inverter
duty D=0.5 for rectifier pulse s with the same triangle
waveform is shown in Fig. 6.

Rectifier
puises,,

and inverter pulse
up

(6

5 "AND* 5, Triangle waveform

Fig.6 . Relation between rectifier and inverter pulse.
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Fig. 7. Relation between rectifier and inverter pulse
by using modulated triangle waveform.

It is confirmed that calculation result (c) doesn’t
become the half of (a). Thus, there is a special triangular
modification to solve this problem [2]. In this method, the
triangular carrier slope is controlled by converter duty
ratio as shown in Fig.7. It is confirmed that calculation
result (¢) equals to the half of (a). The virtual inverter
makes possible to control like the conventional inverter
by using modulated triangle waveform.

CURRENT COMMUTATION

Fig.8 shows the circuit of two phase to single phase
matrix converter, representing the first tawo switches in
the matrix converter shown in Fig. 3. In steady state,
both switch sa¢ and s.» are on state and both switch sg4
and sg; are off. The next steady state switched sg and
switch s, are off at the same time. Here, both s, and sg
do not turn on or off simultaneously, open circuit and
short circuit occur. In this study, “2-step swithing
strategy” as a kind of several multi-step commutation
strategies is used to solve this problem [3]. In this
method, only the device which carries the current (switch
sa1 and sgq in this case) is gated at any given time. So,
switch sa» and sg; are not used at above description. In
this state, turn on of switch sz is delayed time ty from
turn off of switch s,, as shown in Fig. 9. The input voltage
sources va and vg are not open. Qutput current direction
is needed in this method. Fortunately, input and output
current are controlled in the proposed power line router
system as shown in Fig. 10. The controller has output
current feedback signal to control output current.
Therefore, it doesn't ocour any problem.

Fig. 8. Two-phase to single phase matrix converter.

Fig. 9. Timing diagram of two-step commutation.

/\/\/\ Triangle waveform

M atrix converter
pulse

Pulse
compositian
2-step switching

Output current

Y L,
X Aq *
Qutput
voltage (rms)

Fig. 10. Block diagram of power line router system.

Table 1. Circuit parameter for simulation

Line impedance 0'023:]]0'339 L3 600 uH
m
Triangle waveform 10.5 kHz C1 10 uF
L1 35 uH c2 4 uF
L2 250 uH

SIMULATION AND RESULT

Fig.11 shows the router system configuration in
AE-PVC. In this power line router simulation, voltage and
frequency of the input community side A and the output
community side B are fixed by the ideal AC battery
station. Each community is simulated by three-phase
voltage source and line impedance. Each frequency is
different that two or more introductions of AE-PVC and
extreme case are assumed. Therefore, this situation is
asynchronous and the frequency is different. Circuit
parameter is shown in Table.1.

Community A
6.6kV 50Hz

Community B
6.6kV 60Hz

Power line router

Fig. 11. Router system configuration.
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Fig.12 shows the steady-state waveforms of each
voltage and current at active power flow control
P*=100kW and reactive power flow control Q*=0kVar
with constant. It is verified that the power line router
provides sinusoidal current with high power factor on
different frequency connection. The reverse power flow
case (P*=-100kW, Q*=0OkVar) is shown in Fig.13.
Waveforms (b) and (d) are anti-phase from both (a) and

(©.

Fig. 14 shows the power flow direction changing
from P=100 kW to -100 kW from 0.5 [s] to 1 [g], and
reactive power flow is fixed to 0 kVar. Thus, power flow
direction change is verified in this simulation.
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Fig. 12. Waveforms of forward power P*=100kW.

E;,mnl,lwuﬂage 3| A
‘ 5KV 4 dlly

sitle A [KV]

sidle A [A]

T T mmunn_\} currert sice A
15777777/‘7\4 777777 \ — - — 454 i
: ‘ v

N
NSNS

()

side B k]
s

side B (4]

Community current  Cormunity votage  Community current  Cammunity voltage
3

o 10 20 ] 30 40 50
Time [msec]

Fig. 13. Waveforms of reversal power P*= -100kW.
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Fig. 14. Independent control of active and reactive
power flow and power flow direction change.

CONCLUSION

This paper proposes application of matrix converter
based on virtual indirect method to power line router on
AE-PVC. An independent control of active and reactive
power flow and power flow direction change are shown
in the simulations. Thus, it is confirmed that the controls
of power line router can bhe satisfied in the AE-PVC.
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A new type of scaled-down network simulator for testing PV inverters

Yusuke Nakamuraw, Hirotaka Koizumiw, and Kosuke Kurokawa'
1. Tokyo University of Agriculture and Technology
2-24-16 Naka-cho, Koganei, Tokyo, 184-85688 Japan

This paper describes to design and build the ultra scaled-down network simulator. It is composed of the ultra
scaled-down network simulator with electronic circuits and an active power interface (API). The component of the ultra
scaled-down network simulator and its fundamental characteristics are described in detail. The simulator can imitate the
distribution grid which a lot of distribution generators connected with. Islanding and voltage arising can be tested using the

simulator.

Keywords: PV inverter, scaled-down network simulator, distribution generator

1. Introduction

Recently, a number of grid-connected photovoltaic
(PV) systems have been rapidly increasing. Moreover, in
view of diffusion PV system, a great number of PV
systems will be connected to the distribution grid
intensively. In addition, a lot of distribution generators as
well as PV systems are connected. To test the functions
of PV system in such a condition, it is necessary to
enlarge experimental equipment, which leads to high
construction cost and large space to install.

The purpose of this study is to develop a new
scaled-down network simulator which has advantages in
size and cost for expanding. In the previous study, the
ultra scaled-down network simulator with electronic
circuits and an Active Power Interface (API) [1] is
proposed. That includes resistance, capacitance and
inductance composed with electronic circuit. Using the
API, it is possible to connect actual PV inverters to
electronic circuit directly.

2. Ultra scaled-down network simulator
2.1 Basic design

An ultra scaled-down network simulator is
composed of electronic circuits. The advantage is the
flexibility in the expanding and the replacement. In
addition, it makes the space and cost reduced. However,
itis impossible to connect the actual PV inverters for grid
connection with the electronic circuits, because there is
a serious difference in the power levels between PV
inverters and electronic circuits. A solution is inserting an
API between a PV inverter and an ultra scaled-down
network simulator.

A basic design of such a simulator is shown in Fig.1.
It consists of the ultra scaled-down network simulator
and the APIL. The most significant component in this
system is the API, which makes it possible to be
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connected with actual scale power sources such asa PV
inverter.

New experimental equipment

)

Ultra scaled-
down network
simulator

\/

PV system

API|

Fig.1.Composition of ultra scaled-down distribution grid
simulator.

2.2 Composition of the propesed simulator

A model diagram of the ultra scaled-down network
simulator is shown in Fig.2. It is based on the average
distribution system in Japan. It is modeled on residential
area; low voltage system is 100/200V, single-phase
three wire type, and the capacity of transformer is 30kVA.
To design a scaled-down model, the capacity and
voltage of the distribution system are respectively
reduced from 30kVA to 10V¥A and from 100/200V to
5/10V. Using these scale-factors, impedance, connected
loads, and PV output power are calculated by the p.u.
method.

100W module  Domestic load
W J::E, L:
Scaled-down = 3
PV system
|'Q|i‘ Impedance Impedance
I'ransformer box box
B . - H 45m I - } 45m }
. L -
1¢3W = Is Impedance
Impcdancc Impedance|' °™ & box
box box 1 Scaled-down API
rt—l T -
= = 3| PVsystem
=3 97 <
i b ! 100W module
Domestic [oatt=1"  Domestic load

W W

Fig.2. A model diagram of the ultra scaled-down network
simulator.
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The Ultra scaled-down network simulator includes
an AC power supply, pole transformers, low voltage
distribution lines, incoming lines, and low voltage loads.
The AC power supply is a bipolar power supply which
can absorb the reverse power flow from the PV systems.
Pole transformer includes resistances and inductances.
It is designed from an equivalent circuit of a transformer.
Low voltage distribution line consists of resistance and
inductance which are connected in series. The
impedance is calculated from ACSR-OW120mm?, and it
is assumed up to 90m. Incoming line is consists of
resistance and inductance which are connected in series.
The impedance is calculated from 3DV3.2mm, and it is
assumed 15m. Low voltage load consists of resistance,
inductance and capacitance which are connected in
parallel. The impedance can be changed by sequential
change of the resistance and the inductance. The
capacitance is changed in 1uF step. Active power and
reactive power are able to be changed variously by
adjusting the resistance and the inductance. The all
inductances are included in the ultra scaled-down
network simulator consist of electric circuit.

PV inverters are connected through the APIs.
Instead of a real array, a PV array simulator is used [2].
Scaled-down PV systems will be the ac current sources
which perform as PV inverters. They output higher
harmonics like PV inverters and have islanding
protections.

[K7IVTININ

Fig.3. Installation situation of the simulator.

Table 1. Specifications of simulator and comparison with
actual scale.

Simulator | Actual scale
Capacity (VA) 10 30k
Voltage (V) 5/10 100/200
Low voltage distribution line (Q/km) 1.87+4j2.18 | 0.25+0.29
Incoming line (Q/km) 17+0.77 2.3+0.1
Maximum low voltage load (W) 25 7500

2.3 Expansion of ultra scaled-down network

simulator

It is easy to expand the proposed simulator because
it is composed the electronic circuits. At the present
stage it is designed from pole transformer to low voltage
loads. For the future, the simulator is to be expanded,
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which can be applied for various kinds of distribution
generators. They may include wind turbines, gas
generators, fuel cells etc. as well as PV systems. Those
can be scaled down using the scale-factors described in
chapter 2.2.

3. Fundamental characteristics of the API

The composition of the API is shown in Fig.4.
Fundamental functions of the APl are to transfer
electrical properties, voltage and current from Terminal 1
to Terminal 2 and vice versa. These two Terminals have
different power scale. A PV inverter is connected with
Terminal 1, and the ultra scaled-down network simulator
is connected with Terminal 2. The voltage V; and the
current /1 at Terminal 1 are transferred to Terminal 2 by
multiplying factors of 1/n and 1/m, respectively. At the
same time, voltage Vo and current /; at Terminal 2 are
transferred to Terminal 1 by multiplying factors of n and
m, respectively.

Voltage control loop

Unit of voltage

1 Voltage amp.  ratio adjustment | (2,

o
V1 j\/z
Terminal 1 {n] = Terminal 2
OPam m;i J(
- Unit of current ' ‘
5L ratin aditistment ;

o CAGIIIIGUL T Fiu vURGYL SUuTue wian et vpeak 19
connected with Terminal 2. The voltage ratio n is set by
the unit of voltage ratio adjustment. It is set from 1 to 60
discretely and the V4 is measured. The two APIs, API 1
and APl 2, are measured. The voltage ratio R, is
calculated from Vi/V,, the calculation results are shown
in Table 2. The error £, between n and R, is calculated
by En~(n- R,)/n. As the results of the calculation, the Erv
is within 4.6%.

Table.2 The calculation results Vi/Va.

50 60

........ bamacascsbaonnaas

1199 477

The accuracy which the current ratio is decided is
examined. An AC current source with 10mAgea is
connected with Terminal 1. The current ratio m is set by
the unit of current ratio adjustment. It is set from 1 to 40

596 .
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discretely and the /. is measured. The two APIs are
measured. The current ratio R, is calculated from //fs,
and the calculation results are shown in Table 3. The
error £ between /m and R is calculated by E=(m-R)/m.
As the results of the calculation, the Eri is within 5.0%.

Table.3 The calculation results /i/f»

Setting 1 2 5 10 20 40
APl 1 1.0 2.0 4.9 9.9 20.0 | 400
APl 2 1.0 1.9 5.0 10.0 | 20.0 | 40.0

3.2 Frequency characteristics

The frequency characteristics of the voltage control
loop from the point a to the point b in the Fig.4 are
measured. The measured results are shown in Fig.5.
The gain characteristic is maintained constant gain up to
100kHz, and the phase characteristic is maintained
constant phase up to 25kHz. However, if the voltage
amplifier is connected, the frequency is limited to 20kHz
because of the frequency limitation of the amplifier.

Therefore, the voltage fluctuation up to 20kHz is
transferred between Terminal 1 and Terminal 2.

PV inverters may be broke down. Thus, the low pass
filter is included in the current control loop. The spikes
may be generated at turning off of a circuit breaker in
islanding tests.

Therefore, the current fluctuation up to 410Hz is
transferred between Terminal 1 and Terminal 2.

4. Fundamental characteristics of the inductance [4]

The resistance and the capacitance in the ultra
scaled-down network simulator are passive elements.
On the other hand, the inductance components are built
as electronic circuits by using the Generalized
Impedance Converter (GIC) circuit with OP amps. As
shown in Fig.7, all inductances in the simulator are the
floating inductance; thus neither terminal voltage is
connected to ground. It is used for the components of
the pole transformers, line impedances and loads.

The circuit diagram is shown in Fig.7 (a), and the
equivalent circuit of Fig.7 (a) is shown in Fig.7 (b). The
Rs in Fig.7 (a) is behaved as a inductance L in Fig.7 (b),
and given by L=(Cy-R1 Ry Rs)IR>.

-365 ‘
=37

S35

o -38

=

Ga

=
-385

o

- R Ry =

10k
Frequency (Hz)

Fhase (deg)

Figb. The frequency characteristics of the voltage control
loop from the point a to the point » in Fig.4.

The frequency characteristics of the current control
loop are measured and the results are shown in Fig.6.

60

QPamp 1 OPamp 3
; Rl <ﬁ R2 5 fo—ripm—s2
RI R3 R R3 Ri
OPamp 2 OPamp 4 1 T 2
GIC circuit .

(@) The circuit diagram
circuit

(b) Equivalent
Fig.7 The floating inductance

The frequency characteristics of the inductance are
measured at 1.59, 585, and 1000mH. The measured
results are shown in Fig.8 to 10. The phase at 50Hz is
83.5deg, 89.6deg, 88.1deg. The gain characteristic is
increased as the frequency is increased up to 400kHz,
18kHz, 3.2kHz. The phase characteristic is maintained
85deg or more up to 12.6kHz, 18kHz, 126Hz. It becomes
Odeg at 400kHz, 18kHz, 12.6kHz.

As the results, the phase characteristic of each
measured value is 83.5deg or more at 50Hz. And they
are maintained 85deg or more up to 126Hz.

, 100

a5 | I I 40
| | L
gg s | Gain 50
= ! =
T — o0 7
Z 15 40 =
E Phase | RN 60 B
& 5 ‘ ‘ Sl 50 £
) l l — O ©
5 : : — -120
-10 : : | -140
-15 ! ! -180
10 100 410 1k 10K
Frequency (Hz}
Fig.6 The frequency characteristics of current control

loop.

The gain characteristic drops by 3dB at 410Hz. The
gain characteristic keeps dropping over 410Hz, which is
affected by a low pass filter. If a spike is generated at
Terminal 2, the harmonic components flow into positive
feedback by the voltage control loop and the current
control loop. If an over voltage is output to Terminal 1,
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Fig.9 The frequency characteristics of the inductance at
585mH.
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Fig.10 The frequency characteristics of the inductance at
1H.

5. Experimental Results of islanding test

An experimental circuit is shown in Fig.11. It is
imitated a distribution system which is the single-phase
two-wire type. The AC power supply outputs 5V, 50Hz.
The line impedance is setto 0.1+j0.01Q. The load is set
to 0.31 W. The inductance is set to 0.27Var, the
capacitance is set to 0.24Var, they are connected in
parallel. PV inverters are European AC module (90W). In
the both APIs, the voltage ratio is set to 1/46, and the
current ratio is 1/20; thus the power ratio is 1/920. In this
experiment, one PV inverter is considered as
concentration of three PV inverters.

AC module inverter

Breaker 0.14j0.01 €
m
Y f—rg
AC Power supply
5V.50Hz
[0 2omi1 7 Art
o Voltage ratio 1/46
=31k Current ratio 1/20

Fig.11 A circuit model for islanding tests.

The experimental wave forms are shown in Fig.12.
The grid current is expanded to 10 times and displayed.
The power supply from AC power supply stopped at the
cutting off point. However, both the inverter 1 and the
inverter 2 didn't stop. The islanding operation kept up to
8.5 seconds.
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Ch1: Grid voltage — ¥
Ch2: Grid current —

Ch4: Qutput
current

Ch5: Output —
current Inv.2

T
Inv.1 Y
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the
phenomenon. Horizontal: 50msec/div., Vertical: Ch1:
20Vidiv, Ch2: 500mA/div, Ch3: 200V/div, Chd: 1A/div,
Ch5: 1A/div

Fig.12 waveforms in islanding

6. Conclusion

A new experimental equipment for PV inverters has
been designed and built. Fundamental characteristics of
the APl and the inductance have been confirmed.
Islanding phenomena have been observed with the
proposed system. For the future, islanding and voltage
arising will be tested in various experimental circuits.
And the simulator is to be expanded, which can be
applied for various kinds of distribution generators.
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A FUNDAMENTAL EXPERIMENT OF SOLAR CELL’S |-V CHARACTERISTICS
MEASURMENT USING LED SOLAR SIMULATOR
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A solar simulator using LED (light-emitting diode) lamps can measure low-cost to current-voltage (I-V) characteristics
compared with using Xenon lamp. Until now, we calculated the crystalline silicon's (c-Si) |-V characteristics under the
standard test condition (STC) using two |-V characteristics measured under the different irradiance using white LED.
However, calculated current is too small compared with using Xenon lamp. In this paper, we added new methods for
calculating |-V characteristics of ¢-Si using dark current and absclute spectral responses. As the results, accuracy of the
calculated |-V characteristic was improved compare with the previous method.

Keywords: LED, solar simulator, |-V measurement

INTRODUCTION

Current-voltage (I-V) characteristics under the
standard test condition (STC) are important data to
evaluate c¢-Si cell's performance. Normally, |-V
characteristics are measured by 1-Sun solar simulator
using Xenon lamp. However the cost of measurement is
expensive because the facility is so large and electric
power consumption is also large. Additionally, it has
spectral mismatch because Xenon has characteristic
spectrum in infrared band. Therefore, we have been
proposed a solar simulator using LED (light-emitting
diode) lamps which take advantage of its lifetime, electric
power consumption and cost. Characteristics of LED ,for
example spectrum and irradiance, are different from
reference solar spectrum, so we also have been
proposed calculation method that can calculate the ¢-Si's
-V characteristics under the STC by interpolation
method using bilinear 1-V characteristics measured with
White LED or monochromatic LED irradiance source [2].
The method of |-V characteristic measurements using
LED solar simulator is able to measure without spectral
mismatch because it uses reference solar spectrum and
monochromatic lights to calculate absolute spectral
response [1]. However, irradiance of the White LED is
very weak, so it was extrapolated to calculate 1-Sun |-V
characteristic  using  bilinear |-V  characteristics
(approximately 1.5 and 1.0[mW/cr?]). In other words,
the difference of irradiance is so small {approximately
1/70 of the 1-Sun) that an error of measurement is too
much expanded. It is also difficult to stabilze LED's
irradiance and temperature during measurement of two
|-V characteristics. Therefore, calculated 1-Sun |-V
characteristic is smaller than nominal |-V characteristics.
In this paper, we improve the accuracy of calculated |-V
characteristic including spectral response using LED
solar simulator by using |-V characteristics which
measured with all LED and dark current. The irradiance
of all LED is approximately 1/9 of the 1-Sun.

EXPERIMENTS

Spectral responses at discrete wavelength are
derived by three monochromatic LED. Experimental
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discrete spectral responses are supplemented by a
theoretical characteristic of photocurrent, and the whole
spectral responses characteristic of the test cell is
calculated. Total output power under the STC (calculated
short circuit current (ls;)) is obtained in integrating
spectral responses and reference solar spectral
irradiance distribution. Flow chart to calculate I is
shown by figure 1.

Measurement of Discrete spectral responses (3points)

Fit for equation of
continuity of minority
carrier

[ Calculation of absolute spectral responses

Reference spectrum Integration

Calculation of Isc

Fig.1. Flow chart to calculate ...

-V characteristic on STC  (nominal |-V
characteristic) is obtained from two |-V characteristics,
which measured by LED solar simulator and dark current.
Dark current and one |-V characteristic measured by 1/9
of the 1-Sun are used. To stabilize LED’s irradiance and
temperature is easier than using two measured |-V
characteristics, which measured with different irradiance.

Experimental Details

The detail of experiment for measuring I-V
characteristics of ¢-Si cell using LED solar simulator is
shown in figure 2. C-Si cell that used experiment is
packaged one. The cell size is 10%10 [cm?]. Irradiance
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is measured with an optical power meter, c-Si cell's
back-surface  temperature is measured with
thermocouples and power supply is used bipolar DC
source. Temperature of the cell is stabilized at 25 [deg.
C] by airflow. It takes around one half hour to warm up
LED solar simulator to stabilize irradiance.

LED solar simulator has 4colors of irradiance
sources (Blue, Red, Infrared and White), which are
designed for uniform power distribution. The detail of
LED's property is shown in table 1.

Table 1. The detail of LED's property.

Blue Red Infrared | White
Peak
wavelength 466 646 950 -
[nm]
Irradiance
[mW/CmQ] 3.0 25 40 15

RESULTS AND DISCUSSION
Spectral response

Figure 3 shows the packaged c-Si cell model
Packaged c¢-Si cell consist of grass, ethylene vinyl
acetate (EVA) and Si. Spectral response which packaged
c-Si cell is different from raw c-Si cell for ultraviolet (UV)
absorber included in EVA, which absorbed UV band
(>400nm). Hence, we made approximate expression
from its characteristic and integrate it for improve
calculation result of SR. Function of absorption feature

Ji N

1

l+e @

271

Here, a is rate of change and is center of
wavelength of absorption. These values are determined
ais2and 2 is 395[nm] to fit the data sheet. Spectral
response is calculated by integrating this function.

Figure 4 shows measurement of discrete spectral
responses and comparison of integration result and
previous result. At UV bands (<400nm), calculated
spectral response is good at previous result. Additionally,
discrete spectral responses are increased due to
improve measuring device. The result of calculated Iy is
3.41[A]. However, this result is smaller than nominal |g
(3.76[A]). It is thought that spectral response at infrared
band (>700nm) is underestimated.

0.4

0.2

Spectral Response[/

00 100 1500
Wavelength[nm]

Fig. 4. Comparison of spectral responses between
integration result and previous result.

|-V characteristics

Figure 5 shows measured |-V characteristics using
white LED and the result of 1-Sun |-V characteristic
calculation. The difference of two measured |-V
characteristics is so small and close to zero that it can't
measure using current meter. Thus, at higher bias
voltages (>0.5[V]), the characteristics are need to
supplement by theoretical characteristics of diode.

On the other hand, figure 6 shows measured |-V
characteristic using all LED, dark current and the result
of 1-Sun |-V characteristic calculation. Compared the
result using white LED, the difference of two measured
|-V characteristics is become clear. Calculated |-V
characteristic doesn’'t become smocth line at higher bias
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voltages (>0.5[V]). It caused by increasing of current in
cell from bipolar DC source that generates heat in
consequence of internal resistance. Temperature
controlled within £0.5 [deg. C] when |-V characteristics
measured, although the error of measurement was
expanded due to extrapolate calculate method.

4
I ————— ———
-~ S
=5 L
2 \
[} i
] = Calculated |-V characteristic \\
S Using White LED (2.5[m\Wcm2])
—-Using White LED (1.5mWem2)) 'y
0 ‘ ) . .
) 01 02 03 04 05 08
-1

Current[A]

Fig. 5. Calculated |-V characteristic using different
irradiance of White LED.

4
3 -
% 2 — Calculated |-V characteristic
g Using all LED (11[mWcm2])
3 1 L
(5] -~ dark current
0 " N . |
01 0.2 0.3 04 wm;.?\o.e
-1

Voltage[V]
Fig. 6. Calculated |-V characteristic using dark current

and all LED.

Table 2. Comparison of measured and calculated solar
cell's property.

Previous Calculated |-V Nominal |-V
method characteristic characteristic
e 3.023 3.410 3.760
[A]
\”DE
0.513 0.600 0.603
[v]
Maxmum Power | o7 1,535 1554
(Pmax) [W] ) ) )
Voltage at Pmax
0.368 0.477 0.461
M
Current at Pmax
Al 2.467 3.219 3.370
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T
= 2t
€
2 —Nominal |-V characteristic
3 11 —Caleulated -V characteristic N

— - Previous method A
D 1 L 1 I\
01 0.2 03 0.4 0.5 0.6

Valtage[V]

Fig. 7. |-V characteristics compared with measured by
1-Sun solar simulator and previous method data.

Figure 7 shows the comparison of I-V characteristics
between calculated and nominal |-V characteristic. And
the detail of I-V characteristics is shown by table 2.
Calculated |-V characteristic is more approximate to the
nominal |-V characteristic than previous method.
Therefore, the value of Pmax is improved. However,
calculated |-V characteristic is underestimated s
compared with the values that measured by 1-Sun solar
simulator. Thus, fill factor was overestimated.

Verification using nominal lsc

Accuracy of calculated |-V characteristics is verified
by using nominal lsc. Figure 8 shows the result of the |-V
characteristic calculation. |-V characteristic which
calculates previous method is underestimated at higher
voltage. On the other hand, calculated |-V characteristic
using all LED is improved compared with previous
method. However, the |-V characteristic is overestimated
near Pmax. Even though all LED used, its irradiance was
much smaller than 1-Sun. Consequently, series
resistance (R:) might be ignored and the error of
measurement was expanded.

4
3 -
<2t
c
g ——Nominal |-V characteristic
3 1 —Calculated |-V characteristic \
== Previous method \\
0 1 L 1 1Y
0.1 0.2 0.3 0.4 0.5 0.6
-1

Voltage[V]

Fig.8. Comparison of nominal [-V characteristic and
calculated |-V characteristics using nominal lsc.
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On this account, formula (2) is used for the [g] FiJ.F’grn. “gactorﬁ ThatAAf‘fe?t ThedE\éA Encapsulajlmt
; R i iscoloration Rate Upon Accelerate xposure”, ‘st
correction of calculated |-V characteristic. WCPEC pp.897-900 (1994)
Vo=V, -R,, -1} @

Here, V1 and | are voltage and current of the former
value, respectively. V> and |; are corrected value. The
value of R: (=0.01[Q]) was determined to best fit the
experience. Figure 9 shows the result of |-V
characteristics using nominal |s. and correction formula
using R:. The corrected result is almost same as nominal
|-V characteristic so that it is important to improve the
accuracy of calculated |- and to consider R..

4
3 |
T2t
c
g . -
S 4L —Nominal |-V characteristic
o —Corrected |-V characteristic
0 L L
01 0.2 03 04 05 0.6

Voltage[V]

Fig.9. Comparison of corrected |-V and nominal I-V
characteristics.

CONCLUSION

This paper describes calculation results with
extrapolation method using LED solar simulator.
Accuracy of the calculated |-V characteristic is improved
using dark current and 1/9 of the 1-Sun irradiance
compared with the previous method that is using two
reference |-V characteristics measured with LED. It is
obtained that the result using nominal l.. and R;
correction is almost same to nominal |-V characteristic.
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The Development of FPGA-based Digital Controller for PV Inverter

Yusuke Seo’, Kosuke Kurokawa'
1Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo, 184-8588, Japan,
Phone: +81-42-388-7445, Fax: +81-42-388-7132, E-mail: 50005645118@st. tuat.ac.jp

The development of the FPGA based digital controller for the PV inverter with the typical full-bridge inverter is described.
The authors have developed the current control function, the grid connected control function and the MPPT control function
using the FPGA.. As results of the experiments, the inverter was able to connect the grid in two current control methods. In
addition, the MPPT control function was mounted on the FPGA and the stable operation was confirmed. It is presented that the
lower control (waveform control etc.) and the higher control (MPPT control) can be controlled by only one FPGA.

Keywords: PV, inverter, digital controller, FPGA

Introduction

According to the Japanese PV2030 roadmap, 100GW
cumulative Photovoltaic (PV) installation is expected up to
2030. Japanese domestic market size may be assumed 10
to 20GW/Y [1]. It is necessary that the PV module and the
Power conditioner etc. will be mass processed by a
production line. In this research, Field Programmable Gate
Array (FPGA) which has been mass produced is used as
the digital controller for the PV inverters. Now, the current
control method for single phase inverter with FPGA has
been developed [2], where control responsiveness and high
speed calculation of FPGA are shown. However, this control

connectea CONTrOl TUNCUION anad e IVIFF | CONtrol Tuncuon
using the FPGA. The circuit configuration and the
experimental results are shown.

Field Programmable Gate Array

FPGA is a logical device that contains a matrix of
reconfigurable gate array logic circuitry. Therefore, it is the
device which holds the advantages of both, high-speed
operation which is feature of the hardware and adaptability
which is feature of the software. In addition, FPGA has a
function of parallel processing. So, FPGA is possible to
utilize in various applications.

Circuit Design within FPGA

As the FPGA controller for the PV inverter, two current
control methods are designed. One is the “sensor type”
which senses the current reference waveform from the grid

voltage waveform. The other is the “data type” which
previously stores the current reference waveform data in the
FPGA.

Fig.1 shows the block diagram of the constant current
control in the “sensor type”. The analog signal of the current
reference and the inverter output current converted into
digital signal are sent into the FPGA. In the FPGA, the
inverter output current is controlled with P control method
and the FPGA outputs the PWM signal. The advantage of
this method is a high-speed response. The defect is that the
distortion of the grid voltage waveform influences the
inverter’s output current waveform.

Fig.1.Block diagram of the “sensor type”.

Fig.2 shows the block diagram of the “data type”. Only
phase information is extracted from the analog signal of the
current reference, the cycle pulse which has the phase
information of the grid was input into the FPGA. In
synchronous control, the time cycle of the cycle pulse is
counted by the counter. The counter outputs the count value
which is the frequency information of the cycle pulse. And
the frequency of the inverter’s output current is decided by
the count value. The digital data is stored in the FPGA for
the current reference. After synchronous control, constant
current control is applied, and PWM signal is given to the
gate-drive IC. The logic of constant current control is the
same to the “sensor type”. The advantage of this method is
that the inverter can maintain the clean output current
waveform. The defect is the response of the output current
delays one cycle because the Digital Phase Lock Loop
(PLL) uses the frequency of the former period.

259
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Constant current control

Fig. 4 and Fig. 5 show the observed waveforms of the
current reference waveform v., and the inverter output
current waveform i, in the “sensor type” and the “data type”.
In this condition, the AC power source was disconnected.
The verwas supplied by the function generator. From these
results, both the “sensor type” and the “data type” operate
stably in steady state.

PIVIIAVIIGL VITIZIUIV., VGIUGAL. V7g, | VIMIV., (0. 17 VMIV.

Fig. 6 and Fig. 7 show the step response of the inverter
output waveforms in transient state. Fig 6 shows the result
of the “sensor type”. The inverter output the current
waveform just as the step input. So it is confirmed that this
method is possible to respond to high-speed. Fig 7 shows
the result of “data tvne” The inverter outouts the current
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Fig. 8 and Fig. 9 show the observed waveforms of v, is 0 2 4 6 8101214161820
and the scale-down grid voltage v. which is a reduced grid Harmonics
voltage waveform with a transformer. Fig. 8 shows the

observed waveforms in the “sensor type” and Fig. 9 shows
the result in the “data type”. The i, synchronized the v in Fig.10. Distortion of output current in the “sensor type’.

both types. This result means that the inverter operates
under the arid-connected condition in Power factor 1. It was
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parameter k changes the i, therefore Vzand I are controlled
by adjusting the parameter k [4]. The output of the MPPT
loop is the parameter k that can control the output the
inverter's output current. The inverter's output i, is given by
the following equation (1):

iy :ioiMAX xk (1)

where i, shows the value of the inverter output current,
ioaux shows the value of rated current, and £(0<k <1)

shows the parameter of the inverter operation.

To decide the maximum power point, the P&O
method [5] is used. Fig 12 shows the block diagram in the
FPGA. The high-speed loop (constant current control and
PWM control) was configured by the’data type”. In the
FPGA, this high-speed loop and the MPPT loop was
designed in parallel. The MPPT loop outputs the
parameter &, and the high-speed loop receives this value.
Therefore, the inverter changes control its power toward
the MPP.

DCV DCI

Digital
PLL

Fig.12. Block diagram of the FPGA mounting the MPPT.

Experimental results of MPPT function

Fig. 13 shows the observed waveforms. The DC
current waveform Iz and the inverter's output current
waveform i, increase gradually, and the DC voltage
waveform Vi decreases. On the other hand, the grid
voltage waveform v is constant. The waveforms show
that the inverter increases its output power, so the MPPT
control operates normally. Additionally, the AC current
waveform i, increases. The reverse current from the
inverter flows into the grid in this condition, so the phase
of the i, is in reverse compared to the v.

061002 17541125

Fig.13. Observed waveforms of V’a 14 ve, io and ig in the MPPT
operation. Horizontal: (up): 1s/div.,, (down): 20ms/div.,
Vertical: Va: 20v/div., Ii 2A/div., ve: 20v/div., i 2A/div., i
2A/div.

Conclusion

This paper has presented a prototype of the digital
controller based on FPGA for PV inverter. The experiments
were carried out utilizing FLEX10K30A FPGA (ALTERA
Corp.). The “sensor type” and the “data type” have been
developed, and the inverter is able to be connected to the
grid in both types. In addition, the MPPT control function is
mounted on the FPGA and the stable operation has been
confirmed. The lower control (waveform control etc.) and the
higher control (MPPT control) are realized by only the
FPGA.
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Spectral Error Analyses of Pyranometers Composed of Multiple Photodiodes
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In order to develop a cheap, stable, and high performance pyranometer, we propose the dual sensor pyranometer
which measures the irradiance based on the outputs from two kinds of photodiodes. The first photodiode detects the short
wavelength range of the irradiance, and the other detects the long wavelength range of the irradiance. To evaluate only
the spectral error in pyranometer composed of photodiodes, the method to calculate outputs from each photodiode was
developed. As the result, the spectral error in “Si+InGaAs” of the dual sensor pyranometer was smaller than that in the

single Si pyranometer.

Keywords: Irradiance, Pyranometer, Spectral Response, Sensitivity Factor, Spectral Error

INTRODUCTION

In order to evaluate the Photovoltaic (PV) system
and estimate the amount of power generation, the
irradiance data is the most important factor. Thus, it is
necessary to measure it precisely. So far,
thermopile-based pyranometer is widely used in the PV
field. However, since a thermopile-based pyranometer
is very expensive as well known and its sensitivity
degrades somewhat with time, it is inappropriate for a
long time measurement and applying for large number
of sites or modules. In order to solve these problems,
the pyranometer which is installed a silicon photodiode
{single Si pyranometer) has been used. lts spectral
response, however, strongly depends on wavelength
and does not cover whole solar spectrum. Therefore,
the single Si pyranometer cannot measure the
irradiance precisely like the thermopile-based
pyranometer because a spectral miss match error
arises strongly. In consequence, the development of a
cheap, stable, and high performance pyranometer base
on the new idea is required greatly now, particularly in
PV Field.

The purpose of this study aims to the development
of the dual sensor pyranometer which is composed of
two kinds of photodiodes, which are for both short- and
long- wavelength range measurements.

At the present day, the required data has been
collected in the open air. However, output voltages from
each photodiode measured in the open air muddle
directional, temperature, spectral error and the others
at same time. Therefore, only the spectral error of the

dual sensor pyranometer cannot be evaluated precisely.

In this study, the irradiances are estimated by the using
output voltages from each photodiode. They are
calculated by multiplying the spectral irradiances,
absolute spectral response, receiving area of each
photodiode and a shunt resistance. Then, the method
to evaluate only the spectral error and the result
calculated the spectral error independently are
described in this paper.
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THE DUAL SENSOR PYRANOMETER
Construction

The purposed dual sensor pyranometer produces
the irradiance on the outputs from both Si Photodiode
that responses from 300 nm to 1100 nm of wavelength
and InGaAs Photodiode that responses from 900 nm to
1700 nm of wavelength. In our new dual sensor
pyranometer, it is necessary to achieve measurement
error within + 0.01 KW' compared with the
thermopile-based pyranometer. Moreover, GaAsP
Photodiode, which responses in the short wavelength
range, is introduced instead of the Si photodiode
because the maximum of spectral sensitivity for the
GaAsP photodiode is closer to that of solar spectrum.
That is two combinations, which are “Si+InGaAs” and
“GaAsP+InGaAs” for comparison.

Fig. 1 shows relative spectral responses of the Si,
InGaAs and GaAsP photodiode compared to Reference
Solar Radiation.

GaAsP  Si InGaAs | 3%
+ + +

Reference Solar Radiation

Relative Response [-]

0.4 1 Lo

A ——
0 : -0

250 3000 T30 1000 1230 1500 1730 2000 2250 2500
Wavelength [nm]

Normalized Spectral Irvadiance [ ¢ Wiem2nm]

Fig. 1. Relative spectral responses of the Si, InGaAs
and GaAsP photodiode and Reference Solar Radiation.
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Irradiance and Sensitivity factor

The irradiance obtained from the dual sensor
pyranometer is calculated by

G pua = Ki ¥ Eg + Klygaas * Epcats 1

or

Gpuat = Kaaae * Egadsr + K2mcaas * Epcats. (2

where Goya [kW/mz] represents the global irradiance,
Ksi, Kaatsp, Klingars and K2incass [kWImQImV] represent
the sensitivity factors to transfer from the output voltage
to the irradiance. Moreover, Esi, Esanse and Eingass [MmV]
represent the output voltages from each photodiode.
They are usually measured in open air and used as
data.

In the next place, the calibration method to
determine the sensitivity factors is the following
explanation. It is to determine them based on spectral
irradiance measured by spectroradiometer [1]. In fact,
the sensitivity factors are calculated by equation (3), (4),
(5) and (6) from the data measured on cne clear day.

* Si+InGaAs

S - a0

METHOD

Problems for measurement in the open air and its
improvement

An advantage of the dual sensor pyranometer is
decreasing the spectral error caused by the non-flat
spectral response compared with single Si pyranometer.
This idea results in that more precise measurement is
possible.

However, the spectral error analysis for each
pyranometer is very difficult because irradiances are
calculated by using the output voltages which include
directional, temperature, spectral error and the others
at same time in the open air as shown Fig. 2 [2].

Therefore, we proposed a method that irradiances
are estimated by using the output voltages from each
photodiode which are calculated by multiplying the
spectral irradiances, absolute spectral response,
receiving area of each photodiode and a shunt
resistance as equation (7). The main error in the
calculated irradiances is only spectral error caused by
the spectral miss match. Then, the spectral error
analysis for each pyranometer is possible
independently compared with the reference value of the
thermopile-hased pyranometer [3].

A2
Eesrimare - {Z (],1 X Aﬂ«)} <SR @)

Al
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cloudy days as shown in Table 1. The irradiances which
are from single Si pyranometer and two prepared dual
sensor pyranometers were calculated by applying the

obtained output voltages to the equation (1), (2) and (3).

In this regard, however the Sensitivity factors of each
pyranometer shown in Table 2 are determined from the
data measured on clear day,_ April 6, 2005. Mean Bias
Error (MBE) in a unit of W/m", Root Mean Square Error
{(RMSE) in a unit of W/m" and the improvement rate (IR}
from single Si pyranometer in a unit of % are calculated
by equation (8), (9) and {10) as the index.

Table 1. Used data for evaluating the spectral error in
the pyranometer.

Year/month/day
Fine day 2003/4/22, 20041101, 2004/12H8,
2005/3/31, 2005/4/6
Cloudy day 2003/7/22, 2003/8/28, 2005/5/20

Table 2. Sensitivity factors for each pyranometer.

K
[KAm3m ]
i s 0572
Si+InGaAs
Dual Sensor i InGaAs 0.071
Pyranometer | GaAsP 0.889
GaAsPHnGaAs |
! InGsAs 0.156
Single Si Pyranometer 0.762
1 ¥
MBE=—3 (GG ®)
i=1
1 N
RMSE = EZ(G—G,EJ;)Z ©
=1

Where: G represents the global irradiance of the
single Si pyranometer or the dual sensor pyranometer;

Giraf represents the global irradiance of
thermopile-based pyranometer; N represents the
number of data.

RMSE ., — RMSE
IR= 5 Duzl 100 {10)

RMSE

Where: RMS3Esz; and RMSEp,; represent the
values for the calculated RMSE of the single Si
pyranometer and the dual sensor pyranometer,
respectively.
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EVALUATION RESULTS

Fig. 3 shows the spectral error distribution from the
thermopile-based pyranometer in each pyranometer on
five clear days. As time is running out during the day,
the error distribution doesn't change, excluding a solar
angle dependent error in irradiance measurements.
Therefore, only the spectral error in the pyranometer is
extracted by the proposed method.

50

40 & SiHnCraks

{0 GatsPHnCaks

A Single 5iPyrmnometernaks
™ -

30

Eror [Wimd]
= o 5 ¥

Fig. 3. Spectral error distribution of each pyranometer
on five clear and three cloudy days.

Table 3. Value of evaluation index for each pyranometer
on five clear and three cloudy days.

MBE 30 RMSE
(W7 | W7 | i)
Fine 2.0 11.0 4.0
Si+InGaAs
Cloudy -3.0 20.0 7.0
Fine -7.0 10.0 7.0
GaAsP+InGaAs
Cloudy -14.0 15.0 15.0
Fine -4.0 20.0 8.0
Si Pyranometer
Cloudy 17.0 27.0 19.0
1.0 o
SitInGaAs ']
@ GaAsP+InGans @‘
A Single Si Pyranometer+ InGaAs

0.0

o0 0.2 04 0.6 (1% Lo
Irradiance of the thermopile-based pyranometer [KW/m?]

Fig. 4. Correlation of irradiances between the
thermopile-based pyranometer and each pyranometer
on five clear and three cloudy days.

Table 3 shows MBE, 3c and RMSE for each
pyranometer, then Fig. 4 shows the correlation of
iradiances measured by the thermopile-based
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Fig.1l. Measurement result of amount of electric energy
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Table 1. Islanding detection time limit by resonance load.

Reactive power (Var)
-10% -5% 0% +5% +10%

-10% 663.3m5S Islanding 676.9mS 640.8m5S 646.2mS

Active -5% 627.9mS Islanding Islanding 639.8mS 616.8mS
power 0% 633.7m5S Islanding Islanding 667.0mS 619.1mS
w) +5% 672.2m5 Islanding Islanding 670.0mS 632.7mS
+10% 690.1mS 798.1mS Islanding 675 1mS 6495mS

#2 JHRET - FEESREET 170V i) 5 EIREERE HR R

Table 2. Islanding detection time limit by resonance load + motor load (170W).

Reactive power (Var)
-10% -5% 0% +5% +10%
-10% 618.0mS Islanding Islanding Islanding 626.0mS
Active -5% 665.0mS 7020mS 686.0mS 691.0mS 647.0mS
power 0% 628.0mS Islanding Islanding 719.0mS 626.0mS
Wi +5% 675.00mS Islanding Islanding 688.0mS 601.0mS
+10% 649.0mS Islanding Islanding 649.0mS 623.0mS
F3 [FEfaf (1708 2 X2 BElEEsEH SR
Table 3. Islanding detection time limit by motor load (170W).
Reactive power (Var)
-10% -5% 0% +5% +10%
-10% 655.00mS Islanding 743.00mS 702.80mS 637.80mS
Active -b% 644.60mS 684.80mS Islanding Islanding Islanding
power 094 628.30mS Islanding Islanding Islanding 650.82mS
Wi +5% 641.60mS Islanding Islanding Islanding 621.60mS
+10% 647.60mS 726.60mS Islanding Islanding 619.60mS
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(1) Hironobu Igarashi: “The tests of islanding have an influence on motor™ ,
Proc for 2005 National Convention Record IEE JapanNo.6-192,
p.341~342 (2005)
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Shinji WAKAO, Yasuhiro HAYASHI, Nacki UEDA, Akitaka ONOYAMA, Kosuke
KUROEKAWA, Masahide YAMAGUCHI, Kenji OTANI, Yukiyoshi ONO: Investigation of the
Configuration of Autonomy-Enhanced PV Clusters for Urban Commumnity, PVSEC-15,
Shanghai, 10-14 Oct. 2005, PV0654-05.

Masahide Yamaguchi, Tatsuya Kawamatsu, Takafumi Takuma, Kosuke Kurokawa, Kenji
Otani, Shinji Wakao, Yasuhiro Hayashi, Yukiyoshi Ono! Investigation of Battery Storage
Station of Autonomy-Enhanced PV Clasters for Urban Community, PVSEC-15, Shanghai,
10-14 Oct. 2005.

K. Kurokawa, Shinji Wakao, Yasuhiro Hayashi, Hiroghi Yamaguchi, Kenji Otani, Masahide
Yamaguchi, Takafumi Ishii6 and Yukiyoshi Ono: Autonomy-Enhanced, PV Cluster Concept
for Solar Cities to Meet the Japanese PV2030 Roadmap, 2nd International Solar Cities
Congress, Oxford UK, 3-6 April 2006, 7H.2.
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K. Kurckawa: A Conceptual Study on Solar PV Towns and Cities for 21st Century, WCPEC-4,

o
N

March 24, 2007

335



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
336



SURSY L fE5% Papers |\

March 24, 2007
337



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
338



SURSY L fE5% Papers |\

March 24, 2007
339



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
340



SURSY L fE5% Papers |\

March 24, 2007
341



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
342



SURSY L fE5% Papers |\

March 24, 2007
343



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
344



SURSY L fE5% Papers |\

March 24, 2007
345



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
346



SURSY L fE5% Papers |\

March 24, 2007
347



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
348



SURSY L fE5% Papers |\

March 24, 2007
349



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
350



SURSY L fE5% Papers |\

March 24, 2007
351



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
352



SURSY L fE5% Papers |\

March 24, 2007
353



%‘hh TUAT Photovoltaic Student Think-in

TUAT Kurokawa Laboratory
354



=

ZhHER—! BEO

il

DURTY L - B3R Papers

2

I~

RO by 72D KL E

Japan, Running the Top in the Photovollaic Power Generation Industry

AN

—

Kenji OHTANI

photovoltaic systems, solar cell, energy, silicon, grid-connected, |IEA, Feed-in Tariff

LH U &

FEARE AT LOERE, DFESHRTEIIL Ty
A KEEhdEE, HREBOEEFET TS, 63
L EAE st s i Tw b KRR o BHEI I L
WMABT, HAFEE P vOmEFSTTIMiis 4 s 55
Tid, 2000 £LEOKEREE Y L F LW RIKE L
HL, P ESRELRERE LB TAEsELHE
SEDGEREII DV TEES R

2. ABKAREL AT LOERRR

21 KEBREMOF ARES

FEEREE A 7FLE ABEREHYTAEZFLF
—FRANEET I BEEE TR L. RIBELD, o HEET
SN, shEhEs S L TEERE (A LSS
a, KREREATLE BAEHIREL 2L T
WAHNDIEPT, RHEAREL A7 LA (GCS) ipTR
AT AL (BAS) LioRBFAZEMTEL

AR AT & T SR 1958 1L A T
Burgieshanl gMoRBLRECH FESY
- MEE - B S ORI E RS BT B TR
FirArbak LTHELIL DM THF BET
b, REELESCB-THERELOLOO—FRE LT
FIFERAZ L3Sy, EAMIZE, MYES A7 A3E
HEFEERETFOROEER (74 - ELRBEES) i
AEbhE T, FFECEFIINT LEHMEEFEREE LTE
Bavd,

—HT, BESnRBERMECET PHRERORES

HEET THIBFILA2ZR
T TEREAEREWR SRR AR AT
FreF— (Km®o OIHER 1-1-1 ®h
wH
el lim
1995 %, MERIRFROFRELRERT. @
F iR TEEERE TGS SRR
. BAE, PSR A R RS SRR A
BEREWR L F—CWMEL. KRR

a-...ﬁ'

AT LOEREL ST HEESEOSI . BEEINEORE e X

A8 REBISEIE VLTI Noi, 2007

MORE D e HRELHREORELLETESIIEN
Th, KEEEE A TFLAFBENALSILE-TE
fr. COEEE, KREEEN AT AREFOENRE
FESL, BABEOY -2 2D LIBEEE LTH
By af, REEERCETIENy 7o FREBELTH
B+ L edmeEThi,

frds, REEREL AT A EMUE S AF A0S
i, B AL - (IEA) 2B+ 2 OECD 3EE
LBENTHE:2THY, bFEIZE-TRE 1 ZFRET L
9Lk, RETHARERE AT LAOFIEFEE
B ot gl

22 HRAOKBEDESR
KEEhoAENLIEEE LT o vy el
N LA I AERTRER ) 9 o REERS,
Ho AGEOEE L EESTRESRZTELT 7 250
I EBERENRS D WA F3vasdbd ) oLk
EofeEMmEEE TRt s bbb E B2 REE
fhy F e FEROSRETR LA
HAEGHIHE - T s REEhE @S ) o
(R o rBEEHRK 22K Tahy, RSN
BrHG ) Iy MINR O T80 TenhY £
M3 BESREY) 3 EATE6I% THD, 2o

5 _ s RS e

Bi OECD HEI B2 ARAREOMARE (2004 £Hs0 >
=

March 24, 2007

355



i
*‘nh TUAT Photovoltaic Student Think-in

L E L
_[(&v—ﬁ.zﬁ.ﬂ)
P e

#Hadh
(vow—7, HEtd, = #)

- MER — 777 A - BiS
ARER (A, ETEﬁI. ke,
2 L7, k)
& RS —Gahs, [nPE
kb _[ ) (3w )
' F#HHF —CulnGaSe,, CdTe
' (BHIT LW, &5, 8
Lﬁﬁ%-[ﬁﬁmﬁxm!&

HEER
E2 AEROMEL EEEN A -4

L
=& 'Jl%rnﬂ.
e

&0

1000
G ookl T AR A (M W)

3 205 EIZ B0 D RO SR hE R R

Thahh, BEEL)I-BIZBM TR Bt T
BT F L) 3R IAR, ) ) 2 PR 30%
EEE, BEAY (98%) Ml aorEHEELTVA

2006 EO B EMEERIAERSET 17587 MW T
B FORMENOA—-H 2T EEI ST Hfe®
R 5 ¢ HAEVRATED, BiEGIIKe
LBIZAEMW #HHFLTwvAE (rr=7 4276 MW, =
BT 42 MW, =125 MW, =3 100 MW M. #
HEMHA ATOMW L E HABTE OGO E
(ROW) HT280 MW k8387, HEL 15 MW & &
DT d,

FEEDEEEOMFOHEEEL <, Z0 2000 Fh
L G EMTIHEE 30-50% OIL A FET, RERE
W0 EHES L E<THeE b o JMEFIZBT
BB FEOFEEDEERL G5 MW THordl F03
b MGEIEECRICEH s RAEY, L FA v il
LBl iis~ o FE s L2 0, S s EEE L
TUI0% & MMM A L B R o L
fof, L, TZHFEIPE - G&E 4 ¥ FED
ROW @ = FTHAEALTEN. SEIZREY Suntech
HABROREED & LB ESHO MSK #HILL L
Vi M&EA @S 2 - AREREII Ly BFRF Y O
BEEFAITEI 3L Tvbhd wOBER T A,

23 HROXBAFETHALR

WA, FEiiiE e LEATHIREE~OEREm S L,

TUAT Kurokawa Laboratory
356

RO~y TEESNEEEER
L8 T— — e
. 1.6 -
£ 14 BROW-
(LR
- 12
10 A
"@ 08+ ——}
ﬁ g s
gﬂﬁ : B
+ 0k N
0.2
Q0+ T T T T - ol
MOME  20014F  20024F  2003F  20044F  20054E
Elda HERHELE RS
44 e
45 W EOIE p—
#E
30— W F A RR EA Ll
25— Fod o  pmmma ”‘“ |
Y max s |

wn

KR RO WHALR[GW]
= g

=
o

=
=]

0004E EﬂD]ﬂE.?ﬂl}?ﬁ 2003FE 20044 20054E
B5 ABERERMEEEOERERE (EA MBHE)

BEHREOTROEE N LT, HETRE-FLF
—FIROW RS T d, KEERRT, SEOERE
MEHEOEFLLSD, BEERSELFEIEML T
A BESABEEREORHEMNEEOTEEYERT L
diz, HREETEE 0% OISR SRS,

TG PEE FA v ERBLERE Y A 7T A0 SR
HoaThREVWETHL, [EAMRKSIZLE L L, 2005 FE
B S b EO R ERERERER 42MW It Eor
oM, 1997 EALF DR RE LR ns T
Foaw (429 MW) IZEDELTWS, FaA Y EBED
FEEREE ARG HREECD IR LEL. AENE
BrEmEotRmEEFE L Tnalvid

24 HFEICETSRKBELREIZAER

2004 FEREIZ B A AR RKE TG R 6581 MW
THhold, Tm3h, H4FHFENEETHLY. HE
e, EEmiyo - RROHEN 246 MW T OH T &
B BuAtEoio—SEHHET T SE - i
SEOEA WL - EE 0B B R G D 25%
Téat:, FEMFTE HFEFECRBYLr— 248
A

FIEHEHRE 27 LD RES TR L I ER
ETFL, 1994 /I L kW 47 0 F 200 5HTH-
AT, 2005 EECICEEEE AMESISO 1
FTH|TLE ZOXEFIREREERD A7 LAOEAE

PR TSSEE Vol 73 No T, 2007 49



RO+ > TEESLRARE

KEBRBHHOERE VY —EORERE LT, 2006
FETHTLTWES. E6 - NEF oM 51}
EERARERE Y A7 AoRBEHROERL T, o
SEEEREBEAIEE A RS LTyt ARED
OB L ABEEAYVEERAL BRI S,

25 AHTy FRARI ZFL (LAY —F) QiBA
BT, AN Ty PROKEEAF LD LY
7w bR AT ANERET, 2o MEShiDKEB
W A LD eSS oL > TEECEE
TALROIEMTH L, bYETIEEED LS IcEEm
O (4 kW ) SRR AETRS It
ARz, KAy RER S TIRAREBECAFLLED
e A B AT

FAwTid, 74—F4 %17 (Feed-in Tanif} &
ViREIZE T, BECAKBEAREREDERYEA
Twdh, 74— FA»$ ) 700, EBAREVCEHRE
LEPLORIATEEAZE-RYBE T =R
oz k@asns +OH-RIOERE 1722—
oty FOBEAEES,S 2% VFTETHH, 2004 FORR
Hii22Br—oTh-7 AeBh@EEE T+oa4ET
LA VF-RAVEFOERERRT L8 HELTE
AL LI TLAE LR LTHROHLENL 8, BEIA
FEMBALSGTHT, —Bofit ke BEFIETE
Aty F4 THMCE I LG oTWE, 2005 FEITH,
RIEREEO KW LATORBARE S A 7403 L T,
SEEE L EWh #7: 0 5453 - 3 b ATE W ER D (s
Lol KBARBEOWETMEDGEE O BFHE
Ltk A b ns Ernmishsd, BEREL
WIS T AAHREE S RS AEROFEAS v b
Eldh, IOinin, KEBERECAFLAORE LSS
Bl o T2 FERB oA P EERTIHENRS
FOF WL AN

bAE I BWTY, i ¥ — - EEHGELMRE
#® (NEDO) @ [KHERTHESEABEZERSES =
SEIEME] CMMED (A HV~-FHARBETTLE
Bl CE-oTARAEREOAHAR - £ PR HETH2
PERIELTAL. BREOEARAOLBERER <+
= FORILTHE LiZREEN; MW OEBERREE S
AFHT RWOBECRBEENLCGOLLTRBER—0
WREEL MUTEEAERERESHER> (13>
=T, FERO2Zy P EEMEBTAT T v i
FAEEREREEEHLS. coTi] bAEEFEREX
DABAERENFEEE 25 EETHEZ L ERET LD
DEHCEMNFEEHOABERE S 27 4 % 2004 542
210 A LA 7R TRBASEE Y 4 T,
66 MO EBERE 2 F LN 4 E T2 06KW
AMASH, REREOAYFT— 2 TIRLI S
T,

50 WMEBISAK/E Vol73 No.l, 2007

SRS LR Papers |\

EERARERE R 7 A BRGE
{(BH/EW)

ol 1 1 1 &t 1 2 2 2 2 2 2
9 9 9 9 % & 0 0 O O 0 O
9 9 9 9 % 9 0 0 O 0 0O O
4 5 6 7 B § 0 1 2 3 4 5
’I’-*ﬂ‘ﬁt*ifﬁﬁ-iﬂﬁiﬁ
®E R EEKEEER E E E E E

7 ERENEEMAF> Ty 7 -—KBEREAYVIFO
Y- s

3. b EOKRERRXEEDES

bHHETH, KRERELAFLOBMER L FER G
RIZERHTHRATVWE, +0BRE LTHERIVALD
Lit, BRF - AR LA BEEES YL LY
AZETHE 1992EES L NEDO I 2 ABERE 7
A=RFFALHEE 19N FEPLHEEAFIZLF
—BH (NEF) CLAEHABARE AT LTS
—FEMEW S, KEERE S 2 F LD EEES S
BUWSIRLERLAMETR ALY - Lk ol
NEDO 74 =W F5 A FBRTIE, 20054EF TLLH
1800 #F (M 53MW)YVo KGR 27 A NEF @i
ARG R T IL 2000 EEE T2 20 AL (#9932
MW) P {EE MM AERTE S A 7 adtEB St 2006
FERCEEHABERE A FL0RBLEEEETLE
R 319 THETH B &

WD I Ehds, HIZHBEMNTEOANERERED
TELRLATIEy ARERES (HE) o2
w4 R RS =Yy 4 YETEA LR EESNL
AP LHRMBOEMNTRIZES. A—-hEHNFED
HTHAROSZABEREME L. BAWEMEAE A
FELT. AR AT 3 EnEOKBER 150
DBRBHNRE T L LTI EMREY, HEPEBHA -2
EryA4 7o 7LT, BE—DCERD A F ORI

March 24, 2007
357



*‘hh TUAT Photovoltaic Student Think-in

SWVWHR IR HA T,

KIGE RN TEL, BAERE (XU —a3r7
1 ¥ad) BEOYRATLABRICOMEIIEAL S SO
otz BHEHIZLA2ERENBAY K-k, b
BEOHEEARBHRE VA F AENSHORE R v
T IGERL, REEANTEMES LI LWL
o7, HEAOBWEHGERET -0k, KEED
DERBENFZHRBNCERL, LRITERTHIDHD S
T=3r 74 v atOREEEIATRCHLE KEER
PORADENEFNEETHLHORZKENBR (MPPT)
e m B, S 600 Sy YoahidE
PILEPNAEZ EbHEOTHRE NTREFLETH -
fo. INSETON—FVEZ )T LIAT—=00F4
a7 8md, BATHOEETBLRETYS.

Fr, EBIIABERBE AT ARBAL, SEAEE
FEE oA FO%H, HROIZR CEREMIZE
v 25 A FE L OBEALI-FAREBEE L E TV A EANT
ik, 7728 — k- NOETA-TIE2TROBELWTE
BThHhEVzZahb LRy, TOkD, 41104
BRAGEDRA P FF VA —CAETESETES, BA
-l 5h, BAPHETLIABEREL AT LA0E
EUDFMO-0IZ, EESN— T REETAEDTR%
RATE/ BARLIVF-HETR 74— 5 A
(REPP} 2 ) — v I A V¥F—-54 7257 (CELC) I
LHEZS) Y IERS, KBAREHAY VT —2
(PV-Net) 2& 5 PVEREZNEOEH I 2o N5,
PV B ET T3, EXHMRESMEMP NEDO 256D
FEMER Lo THELABEBRE D 22 Lb— 1 3 VY
2w, ZBORETARBEEERBEOHEEY LEL
TR R AT LOEBEZR 2 1To T 5.

4, BS5RBERBADLHIC

DWET NEF 2L 2 FEEHKBRERE L A7 205RE
FEDSRT LRSS, BHERLIZ74 - Ff 251 78
FAEAREBEROYIILE LCEEABUTEY, BED
BETHEASALELD THE. £ T, HDIETY
TA=—FA 7)) 7@ AT EFRBREELERICE
STHAyE—dewnil, #3 LRV ERS.
LEA A KBEAEETARECEATHAHEL LTIR
HHTE20THEY, KEEEREFEINALEL D
DER LT, BEBRERESE VISHOMBELIBT R
LEFIBRODBE o T LEHERLHEHPETHAE. F
AV TRENC 7 7 7 FRBEERON ANV —FDEWFT
HAHEHE BERE, FEmUmEPERSETH), &5
CEREBEC L AT RERARBEHRORE L &0 RVFF) )
HrHlo, HICHPHBI LEBALMBOELTE
NERTELER).

TUAT Kurokawa Laboratory
358

WRO by TEEDRISAFKR

1277, TREBREFHRLHISCD B LToKREE
BEEAGE T, FEAZEVWENELLTEZ 2 XY ]
ELTIEHERT 2700, RHERARECIIRERECRK
BENRE VT LT EAFSH L. RERL LUFHEL D
FAECE7A— N4 V5 ) 7DEI LAy T4 7R
MEOTHLOT, RRORYE=s ) v FOMMAEMH
HEbELERNIEED.

BAL—FHRAHGORBGHREOEEE LT 5013
EEFE LY. KEXREOMBIIEETIEASR RS
i) g A REnZ LR, KEEREBEBICHTA
MBARR EAPRECTHL. (W) BRL LW HE
FHMAATRTE XA TER L - KB AREEL—FOF
BLBEANENFIENER PO, Y402 —FFEE
DRKGRREORERFBEY THLPEHETE TRy
CENTA ol BERNEV (BE) FBLTVWTHE
BRIEREL Y 10% L ES L2 WHREELPEORL TR
o o B e - WIS LTIk, EA0EERE FRE
L., MBEOFEL BEZET LML VE. REESD
HTWERLITWTHEBIIEHREL EIZIE S TR
= Et LT, KRR CA L OB B
PhLikv. ZED [REEVHAFLI VL TR
VI B - FRBES, MFENERESNT
WA EIREREHBEBDNL,. ik, KEEHIE
NV ORIERB PR ) 2y RKGEIZE o TiRLT
BHOBEENTRESRTVAZILTIILEAYESER
TBLHT, EEEUIBWIEBHAL Y ASALrE
RENGVIERFMELTHRAALZODEELI SN S,

KB AV OBEREHS (v b)) BE»GE
EE& (7 18) EBTRHETS LI EBRE IEC
61853) HEOBEIDHETHTHY, Z0LHLh—iKEE
HFOBRBEER-BEREZTHLH. S50, HEEER
OFER, BEEESROBN - REEM TS &Y Ch7:
&, BENERRQBINILIFEOKRGEMEXIZE > T
BELTI2H5DEABBELORREEDEVRL 25TH
A3, ‘

Z2 £ X ®

IEA [International Energy Agency, Trends in Photovoltaic
Applications, Report IEA-PVPS T1-15: 2006, {2006).
Photovoltaic News, Vol 25, No.4, The Prometheus Institute,
(2006).

3) REEFHEARSE A7 bz2-X 1535, (2006).

4) HriduF—BH (NEF) & — A~~~ http//wwwnelorjp
5) BRALERNPIAN, EESHRSHAR, NEDO ¥k 16—~17
EETERES (KBEARET A7 A EEMOHTEE]L
(2006).

KBAEEHS SLOABEREE AT LYY RY T A,
2006 4. {ih b DEHERL

1

—

2

=

6

=

MBI EREE Vol.73, No.1, 2007 51



273

|QDDD |

-

Email alert servicel
subscribe now

-

"_J RSS feed service
Subscribe and get the latest
iec e-tech headlines delivered

to your desktop. (ESS guide)

» Search & buy standards
» Download area
» Customer Service Centre

SURTY L\ fR5% Papers |\

renewable energy, covering 10 categories that included policy issues, photovoltaics, solar thermal
applications, lowi-energy buildings, wind energy, biomass, hydrogen and fuel cells, ocean-energy,
geothermal and advanced power systems

The importance of renewable energy

In his introduction to the conference, Kurokawa stated, "The importance of the renewable energy
technology field has been growing very significantly since the beginning of the 21st century and will
continue throughout this century. The Crganizing Committee of Renewable Energy 2008, was set up
as a collaborative effort between academia, industry and the Japanese government. There is
growing wiorldwide expectation that renewable energy technologies will prove to be a solution for
increasingly apparent energy and global environmental problems. According to certain long-term
wiorld energy projections, renswable energy could be able to satisfy half of the world's energy needs
by 2050, This would put renewable energy on the same level of importance as conventional energy "

Some of the themes of the conference:

B |arge and small scale photovaltaic systems and solar thermal
projects being studied around the world as providers of additional
energy,

B lapanese geothermal energy utilisation;

B Awiorkshop on advanced renewabls energy research in Russia;

m The implication of renewable energy on the sustainability of
regions — 100 years ahead;

Fenewable Energy 2006 B The prospects of renewable energy in various areas in the world,
particularly in light of high oil prices;

B Wind energy, with speakers from the UK, Greece, Morway and
Japan,

B The energy recovery that iIs made possible by treating urban
sewage sludge, marine biomass, wood, sugars, chicken manure
slurry and cther bio-energy conversion sources such as rice,
charcoal, wind and waves

Renewable energy to supply 60% of world's energy 2100

Kurokawa continued stating that "More aggressive forecasts predict that renewable energy might
supply two-thirds of the world's energy by 2100, We, the specialists involved in the field of renewable
energy technologies today, should accept this challenge and respond to such ambitious targets this
century in an aim to provide new direction and quality to our lives. Knowing that renewable energy is
the only green and peaceful resource present anywhere on earth, should inspire us to further its
development and dissemination. The Organizing Committes sincerely believes that "Renewiable
Energy 2006" will provide an excellent opportunity for those in attendance to malke an invaluable
contribution to our planst by forming proposals to establish an ideal MNew Energy System' for the
21st century "
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March 24, 2007
359



%‘hh TUAT Photovoltaic Student Think-in
~ memo ~

TUAT Kurokawa Laboratory
360



SURSY L fE5% Papers |\
~ memo ~

March 24, 2007
361



%‘hh TUAT Photovoltaic Student Think-in
~ memo ~

TUAT Kurokawa Laboratory
362




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


