系統故障時における BTB 式ループコントローラの特性解析

学生員 市川 雅英^{*}(農工大) 正 員 岡田 有功(電中研) 正 員 黒川 浩助(農工大)

Simulation analysis of loop power flow controller in fault condition

Masahide Ichikawa*, Student Member, (TUAT), Naotaka Okada, Member, (CRIEPI), Kosuke Kurokawa, Member, (TUAT)

1. まえがき

エネルギー・環境問題対策など社会的ニーズから,需要 地域における分散型電源の普及が予想される。配電系統で は,変電所から需要家への電力供給に対して最適な設計が 行われているため,分散型電源の系統連系により新たに発 生する電圧・潮流問題の解決や,配電設備の有効利用技術 が求められている。電中研では,現在放射状に形成されて いる配電系統をループ・メッシュ化し,時間的・面的な設 備利用率の向上と潮流の均等化による問題の解決を検討し ている。しかし,単純なスイッチでループ・メッシュ化す る運用では現状の保護方式の適用が困難になることが予想 されるため,ループ点に半導体電力変換技術を適用したル ープ・メッシュ形態を提案している。

本稿では,配電系統のループ・メッシュ化に半導体電力 変換技術を用いたループコントローラ(LPC)を導入した場 合の系統故障時における LPC の特性解析結果を報告する。

2. ループコントローラ (LPC)の構造

図1にBTB 式ループコントローラ(LPC)の構造を示す。 一方の高圧配電線の三相交流を変圧器とPWM AC/DC コン バータにより一度直流に変換し,再びPWM AC/DC コンバ ータと変圧器により交流に戻し他方から出力する。この交 直・直交変換時の制御により,LPC を通じて流す潮流や各 回線の無効電力を任意にコントロールすることができる。 これらの制御により電圧の適正化,潮流の均等化および設 備の有効活用をねらう⁽¹⁾⁽²⁾。

3. シミュレーションモデルの検討

LPC によるループ・メッシュ化に伴い,地絡および短絡 故障などの系統故障時の特性がどのように変化するか検討

図 2. ループコントローラの EMTP モデル(片側) Fig. 2. EMTP model of LPC (left converter)

図 3. 小規模ループ配電系統モデル

Fig. 3. Scale down model of loop distribution system 表 1. 実験回路の条件

Table 1	Condition	of test circuit	
Table 1.	Condition	of lest circuit	

項目	目 値 項目		値
R1	0.200 Ω	L3	4.23mH
L1	3.71mH	R4	0.284 Ω
R2	0.268 Ω	L4	4.21mH
L2	3.82mH	CG	7.6 µ F
R3	0.311 Ω	RG	10Ω

するため, EMTP によるシミュレーションを行った。解析に 用いた LPC モデルは三相 PWM スイッチ部分を TACS 制御 スイッチとダイオードにより模擬した。片側の交直変換器 のモデルを図 2 に示す。LPC モデルと配電系統モデルの検 証のため小規模実験を行った。小規模実験の回路を図 3 に 示し,実験回路における条件を表1に示す。

小規模実験による結果とシミュレーションの結果を図 4 に示す。図4はフィーダ2側からフィーダ1側へLPCを通 じて 5[kW]の潮流を送る条件下の結果で,(a)は,一線地絡 故障,(b)は三線短絡地絡故障の結果の一例である。小規模 実験とシミュレーションはほぼ一致している。

4. 実規模系統モデルによる解析結果

実規模系統は,配電用変電所から引き出された2 つのフ ィーダの末端をLPCによりループ化する系統モデルを想定 した(図5参照)。フィーダ2側からフィーダ1側へLPCを 通じて1[MW]の潮流を送る条件下で,系統故障を図5中の F22点もしくはF26点で発生させた。また同時に,現状の放 射状配電系統および,ループコントローラを用いずに単純 なスイッチを使用してループ化した配電系統についても, シミュレーションを行い,結果を比較する。

図 5. 実規模ループ配電系統モデル

リアクタンス分:1.5mH/k

Fig. 5. Actual scale loop distribution network model

量:20MVA 抵抗分:0.15 /km 有効電力:450kW 力率:0.9

高圧配電線 容量: 低圧系統模擬負荷 有対 実規模系統のシミュレーションを行った結果の一例とし て、一線地絡故障時のシミュレーション結果を表2に示す。 表2から、単純なスイッチを用いてループ化したモデルで は、健全な回線にも零相電圧および零相電流が出ているこ となどから、現状の放射状配電系統と比較した場合系統故 障の範囲が拡大していることがわかる。一方、LPCを用い てループ化した配電系統は、零相電圧(回線1:0V,回線2: 3800V)、零相電流(回線1:0A,回線2:15A)と、故障点を流 れる地絡電流(17A)が、現状の放射状配電系統の故障時の特 性とほぼ同じであることがわかった。

三線短絡地絡故障時におけるシミュレーション結果を表 3 に示す。故障回線を流れる故障電流は,LPC ループ,放射 状および単純ループで,それぞれ,4240A,4180A,3910A でほぼ同一である。一方,健全回線の電流は,73A,130A, 740A で,単純ループでは故障電流が健全回線からも供給さ れるのに対しLPC ループでは放射状系統と同じになる。

これらから,LPC によって接続された2 つの系統の一方 で発生した系統故障の影響が,他方の系統に拡大すること がないと考える。また,LPC が一線地絡故障により停止す ることなく,故障発生前と同様な運転を継続できることが わかった。

5. まとめ

系統故障時における BTB 式ループコントローラの特性解 析を行った。その結果,ループコントローラを用いたルー プ配電系統の特性は,現状の放射状配電系統の特性に近く, 現状の系統故障保護方式が適用できる可能性が高いと考え られる。

文 献

(1) 岡田,「需要地系統におけるループコントローラの開発 制御方式の提案と実験装置の試作」,電力中央研究所報告,T99075 (2000)

(2) 岡田,「需要地系統におけるループコントローラの開発 移行過程
における自律制御方式 」,電力中央研究所報告,T00045 (2001)

表 2. 一線地絡故障時におけるシミュレーション結果(故障点: F22)

Table 2	Simulation	result under	single-line-t	o-ground fault
14010 21	Dilline to the	recourt ander	Unight mile t	o ground radiu

対地静電容量:0.1 μ F/km 1スパン:1.5km 線対地静電容量:3.9 μ F

健全な回線(回線1)		系統故障が起きた回線(回線2)		故障点に流れる	
	零相電圧[V]	零相電流[A]	零相電圧[V]	零相電流[A]	地絡電流[A]
ループコントローラ	0	0	3800 (5070)	15 (244)	17 (236)
放射状配電系統	0	0	3800 (5200)	14 (183)	15 (258)
単純なループ	3730 (5700)	13 (159)	3800 (4930)	12 (151)	31 (264)

表中の値は,故障後に定常的に続く値の実効値。括弧中の値は,故障直後の過渡的な変化のピーク値。

表 3. 三線短絡地絡故障時におけるシミュレーション結果(故障点: F22)

Table 3. Simulation result under three-phase-short circuit.

	故障点における	故障点における	健全な回線の	故障回線の
	故障電流[A]	線間電圧[V]	回線電流[A]	回線電流[A]
ループコントローラ	4000	3460	73	4240
放射状配電系統	4120	3560	130	4180
単純なループ	4460	3860	740	3910