# 太陽電池アレイ分布定数回路シミュレーション ~アレイ等価回路の提案~

学生員 桜井康弘 (東京農工大) 正 員 黒川浩助 (東京農工大)

Photovoltaic (PV) array's distributed-parameter line's simulation -The suggestion of array's equivalent circuit-Yasuhiro Sakurai, Student Member (Tokyo University of Agriculture and Technology) Kosuke Kurokawa, Member (Tokyo University of Agriculture and Technology)

## 1. まえがき

太陽電池アレイは屋外に設置されるため雷サージなど による過電圧が印加される危険性が大きいが、サージ特性 などが解明されていないため、国際的にアレイの接地の有 無についての取り決めがなされていない状態である。そこ で機器の保護や安全性のためにアレイをモデル化しサー ジ解析をすることによりアレイの接地について定量的に 評価し検討していく。本研究ではその基礎研究としてサー ジ解析を行うアレイの等価回路を提案する。等価回路には サージ伝播に影響すると考えられる対地容量、および太陽 電池セルの pn 接合に生じる障壁容量などを考慮し、それ ぞれを実験により求めた。

#### 2. 等価回路の推定方法

## 2.1.太陽電池セルの等価回路

太陽電池セルの等価回路はネットワークアナライザを 用いて測定したセル出力端子間のインピーダンスの周波 数特性より推定した。インピーダンス測定は光を照射しな い場合(暗状態)と照射した場合(明状態)の二つの条件 で行った。ここで、太陽電池セルは現在一般的に広く使用 されている単結晶シリコン太陽電池を用いた。

#### 2.2.太陽電池モジュールの対地容量(1)

太陽電池モジュールは充填材として用いられている EVA(Ethylene vinyl acetate)などにより大地と絶縁さ れているため、対地容量が存在する。その対地容量を以下 の方法で求めた。

- 太陽電池モジュールの出力端子と金属フレーム間に 直流電圧を印加して、電流の時間変化を測定する。
- (2) 印加した電圧と測定した電流の時間変化により抵抗 値の時間変化を求める。
- (3) 求めた抵抗値から等価回路の形態を推定し、その回路 の抵抗の理論式を求める。
- (4) 理論式を用い(2)で測定した抵抗値を最小二乗法によ り近似し、回路素子の値を求める。

実験に用いたモジュールの仕様を以下に示す。 出力:53W サイズ:985×445×30(縦mm×横mm×厚さmm) フレーム:有り(アルミフレーム)

バックシート

- モジュール 1(白テドラー / アルミ箔 / 白テドラー)
- モジュール2(白テドラー/PET/白テドラー)

バックシートの材質によりモジュールの対地容量に違いがでることが考えられるため、上記の2種類のモジュ ールで実験を行った。

## 3. 結果

#### 3.1.太陽電池セルの等価回路

ネットワークアナライザを用いて測定した暗状態と明 状態におけるセル出力端子間のインピーダンスの周波数 特性および、暗状態のインピーダンスから推定した図2の 回路の周波数特性を図1に示す。回路の周波数特性は図2 の素子を表1に示す値としEMTPを用い計算した。この 図1の結果からセル出力端子間のインピーダンスは図2の 回路では表すことができず、キャパシタンス Cdに周波数 特性を持たせる必要があると考えた。そこで暗状態のイン ピーダンスより障壁容量の周波数特性を求めた。(図3)

次に明状態の場合、図1の周波数範囲においてインピー ダンスが1Ω程度でほぼ一定であった。これはセルが発電 状態であるため障壁が低くなり図2の回路のキャパシタ ンス部分が短絡状態、つまり明状態の場合、セルが1Ω程 度の抵抗で表すことができると考えられる。



Fig.1.Solar cell's impedance



図 2 セルの等価回路 Fig.2.PV cell's equivalent circuit

## 表1 図2の回路素子の値

Table.1.Table of fig2 circuit components



図3 障壁容量の周波数特性

Fig.3.The relation between barrier capacitance and frequency

## 3.2.太陽電池モジュールの対地容量

太陽電池モジュールの出力端子 - 金属フレーム間の抵 抗値および、この結果より推定した図 5 の回路の理論式を 用いて実験値を最小二乗法で近似した曲線を図 4 に示す。 また、最小二乗法により得られた図 5 の回路素子の値を表 2 に示す。







Fig.5.Equivalent circuit of PV module's output and frame

表2 図5の回路素子の値

| Table.2. Table of | gig5 | circuit | component | ts |
|-------------------|------|---------|-----------|----|
|-------------------|------|---------|-----------|----|

|         | C(nF) | $Rs(G\Omega)$ | Rp(GΩ) |
|---------|-------|---------------|--------|
| モジュール 1 | 1.5   | 4.5           | 16.5   |
| モジュール 2 | 1.3   | 10            | 30     |

またモジュール 1 でバックシートのアルミ箔-フレー ム間を同様に測定したところモジュール1の出力端子-フレーム間とほぼ等しい抵抗の時間変化の曲線が得られ た。よってモジュール1の場合、対地容量はアルミ箔とフ レーム間の静電容量により決まるのではないかと考えた。

## 4. アレイ等価回路

実験結果よりサージ解析を行うための太陽電池モジュ ール(モジュール1の場合)の等価回路を提案する(図6)。 点線で囲った部分がセル1枚の出力端子間の等価回路で ある。図6のような回路を組み合わせることによりアレイ を模擬できるのではないかと考えている。また等価回路に はセルの受光面における無限遠に対しての静電容量も考 慮した。これは、雷雲など電荷を持つものの影響により太 陽電池に電圧が誘導される場合などに雷雲とアレイ間の 静電容量を考慮しなければならないためである。



図 6 モジュール等価回路(モジュール1) Fig.6.PV module's equivalent circuit (module 1)

## 5. まとめ

本研究ではセルの障壁容量とモジュール 1 の対地容量 を実験により求めアレイ等価回路を提案した。今後はモジ ュール 2 についても検討していく。また提案した太陽電池 アレイ等価回路の妥当性を評価し、さらに EMTP を用い たサージ解析の手法を確立することにより、アレイの接地 について定量的に評価し検討していく。

#### 

(1) M. Pellegrino, A. Parretta & A.Sarno: "A survey on the electrical insulation behaviour of the PV module encapsulant materials"